材料科学
激光器
光电子学
光纤激光器
激光线宽
光子集成电路
相对强度噪声
铒
激光功率缩放
光学
光子学
半导体激光器理论
半导体
波长
物理
兴奋剂
作者
Jing Wang,Zheru Qiu,Xinru Ji,Andrea Bancora,Grigory Lihachev,Johann Riemensberger,Rui Ning Wang,Andrey Voloshin,Tobias J. Kippenberg
出处
期刊:Cornell University - arXiv
日期:2023-01-01
被引量:5
标识
DOI:10.48550/arxiv.2305.03652
摘要
Erbium-doped fiber lasers exhibit high coherence and low noise as required for applications in fiber optic sensing, gyroscopes, LiDAR, and optical frequency metrology. Endowing Erbium-based gain in photonic integrated circuits can provide a basis for miniaturizing low-noise fiber lasers to chip-scale form factor, and enable large-volume applications. Yet, while major progress has been made in the last decade on integrated lasers based on silicon photonics with III-V gain media, the integration of Erbium lasers on chip has been compounded by large laser linewidth. Recent advances in photonic integrated circuit-based high-power Erbium-doped amplifiers, make a new class of rare-earth-ion-based lasers possible. Here, we demonstrate a fully integrated chip-scale Erbium laser that achieves high power, narrow linewidth, frequency agility, and the integration of a III-V pump laser. The laser circuit is based on an Erbium-implanted ultralow-loss silicon nitride Si$_3$N$4$ photonic integrated circuit. This device achieves single-mode lasing with a free-running intrinsic linewidth of 50 Hz, a relative intensity noise of $<$-150 dBc/Hz at $>$10 MHz offset, and output power up to 17 mW, approaching the performance of fiber lasers and state-of-the-art semiconductor extended cavity lasers. An intra-cavity microring-based Vernier filter enables wavelength tunability of $>$ 40 nm within the C- and L-bands while attaining side mode suppression ratio (SMSR) of $>$ 70 dB, surpassing legacy fiber lasers in tuning and SMRS performance. This new class of low-noise, tuneable Erbium waveguide laser could find applications in LiDAR, microwave photonics, optical frequency synthesis, and free-space communications. Our approach is extendable to other wavelengths, and more broadly, constitutes a novel way to photonic integrated circuit-based rare-earth-ion-doped lasers.
科研通智能强力驱动
Strongly Powered by AbleSci AI