A DRL Strategy for Optimal Resource Allocation Along With 3D Trajectory Dynamics in UAV-MEC Network

计算机科学 强化学习 移动边缘计算 弹道 资源配置 资源管理(计算) 任务(项目管理) 轨迹优化 分布式计算 数学优化 实时计算 模拟 GSM演进的增强数据速率 最优控制 人工智能 计算机网络 数学 物理 经济 管理 天文
作者
Tayyaba Khurshid,Waqas Ahmed,Muhammad Rehan,Rizwan Ahmad,Muhammad Mahtab Alam,Ayman Radwan
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 54664-54678 被引量:9
标识
DOI:10.1109/access.2023.3278591
摘要

Advances in Unmanned Air Vehicle (UAV) technology have paved a way for numerous configurations and applications in communication systems. However, UAV dynamics play an important role in determining its effective use. In this article, while considering UAV dynamics, we evaluate the performance of a UAV equipped with a Mobile-Edge Computing (MEC) server that provides services to End-user Devices (EuDs). The EuDs due to their limited energy resources offload a portion of their computational task to nearby MEC-based UAV. To this end, we jointly optimize the computational cost and 3D UAV placement along with resource allocation subject to the network, communication, and environment constraints. A Deep Reinforcement Learning (DRL) technique based on a continuous action space approach, namely Deep Deterministic Policy Gradient (DDPG) is utilized. By exploiting DDPG, we propose an optimization strategy to obtain an optimal offloading policy in the presence of UAV dynamics, which is not considered in earlier studies. The proposed strategy can be classified into three cases namely; training through an ideal scenario, training through error dynamics, and training through extreme values. We compared the performance of these individual cases based on cost percentage and concluded that case II (training through error dynamics) achieves minimum cost i.e., 37.75 %, whereas case I and case III settles at 67.25% and 67.50% respectively. Numerical simulations are performed, and extensive results are obtained which shows that the advanced DDPG based algorithm along with error dynamic protocol is able to converge to near optimum. To validate the efficacy of the proposed algorithm, a comparison with state-of-the-art Deep Q-Network (DQN) is carried out, which shows that our algorithm has significant improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞鸟完成签到,获得积分10
刚刚
刚刚
lmy完成签到,获得积分20
刚刚
1秒前
天天快乐应助科研小趴菜采纳,获得10
2秒前
啵啵完成签到,获得积分10
2秒前
丘比特应助allton采纳,获得10
3秒前
车谷子完成签到,获得积分10
3秒前
4秒前
4秒前
聆风完成签到,获得积分10
4秒前
Yaaaaaa发布了新的文献求助10
4秒前
淡淡向卉完成签到,获得积分10
4秒前
5秒前
搜集达人应助苹果秋灵采纳,获得10
5秒前
北秋完成签到,获得积分20
5秒前
yooloo发布了新的文献求助10
5秒前
zzzzzzzzzj完成签到,获得积分10
5秒前
水门完成签到,获得积分10
7秒前
碗碗完成签到,获得积分10
8秒前
打打应助无风海采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
隐形曼青应助Wrui采纳,获得10
10秒前
弦弦弦发布了新的文献求助10
10秒前
heart发布了新的文献求助30
10秒前
nuo发布了新的文献求助10
10秒前
苑小苑完成签到,获得积分10
10秒前
11秒前
有理想的TCMer完成签到,获得积分20
12秒前
sry完成签到,获得积分10
12秒前
善学以致用应助LSY采纳,获得10
13秒前
W1发布了新的文献求助10
15秒前
16秒前
无花果应助青山采纳,获得10
16秒前
16秒前
完美世界应助zhenya采纳,获得10
17秒前
桃子爱学习完成签到,获得积分10
17秒前
Ma完成签到,获得积分10
17秒前
杏子应助jack采纳,获得10
17秒前
yznfly应助lhnee采纳,获得30
18秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961223
求助须知:如何正确求助?哪些是违规求助? 3507496
关于积分的说明 11136509
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790571
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186