A DRL Strategy for Optimal Resource Allocation Along With 3D Trajectory Dynamics in UAV-MEC Network

计算机科学 强化学习 移动边缘计算 弹道 资源配置 资源管理(计算) 任务(项目管理) 轨迹优化 分布式计算 数学优化 实时计算 模拟 GSM演进的增强数据速率 最优控制 人工智能 计算机网络 物理 数学 天文 管理 经济
作者
Tayyaba Khurshid,Waqas Ahmed,Muhammad Rehan,Rizwan Ahmad,Muhammad Mahtab Alam,Ayman Radwan
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 54664-54678 被引量:9
标识
DOI:10.1109/access.2023.3278591
摘要

Advances in Unmanned Air Vehicle (UAV) technology have paved a way for numerous configurations and applications in communication systems. However, UAV dynamics play an important role in determining its effective use. In this article, while considering UAV dynamics, we evaluate the performance of a UAV equipped with a Mobile-Edge Computing (MEC) server that provides services to End-user Devices (EuDs). The EuDs due to their limited energy resources offload a portion of their computational task to nearby MEC-based UAV. To this end, we jointly optimize the computational cost and 3D UAV placement along with resource allocation subject to the network, communication, and environment constraints. A Deep Reinforcement Learning (DRL) technique based on a continuous action space approach, namely Deep Deterministic Policy Gradient (DDPG) is utilized. By exploiting DDPG, we propose an optimization strategy to obtain an optimal offloading policy in the presence of UAV dynamics, which is not considered in earlier studies. The proposed strategy can be classified into three cases namely; training through an ideal scenario, training through error dynamics, and training through extreme values. We compared the performance of these individual cases based on cost percentage and concluded that case II (training through error dynamics) achieves minimum cost i.e., 37.75 %, whereas case I and case III settles at 67.25% and 67.50% respectively. Numerical simulations are performed, and extensive results are obtained which shows that the advanced DDPG based algorithm along with error dynamic protocol is able to converge to near optimum. To validate the efficacy of the proposed algorithm, a comparison with state-of-the-art Deep Q-Network (DQN) is carried out, which shows that our algorithm has significant improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jokic完成签到,获得积分10
刚刚
科研通AI2S应助小心采纳,获得10
刚刚
念梦完成签到,获得积分10
1秒前
科研通AI2S应助kingtongx采纳,获得10
1秒前
zimablue发布了新的文献求助10
2秒前
wanci应助冷傲的白卉采纳,获得10
2秒前
cacaca发布了新的文献求助10
3秒前
852应助土豆炖牛腩采纳,获得10
3秒前
万事顺心发布了新的文献求助10
5秒前
嘟嘟图图完成签到,获得积分10
5秒前
5秒前
erin完成签到 ,获得积分10
7秒前
Melody发布了新的文献求助10
8秒前
瘦瘦萤完成签到,获得积分10
8秒前
小鬼完成签到,获得积分10
9秒前
小心完成签到,获得积分10
9秒前
酷波er应助科研通管家采纳,获得10
10秒前
钱兵应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
ziyue应助科研通管家采纳,获得10
11秒前
哈哈完成签到 ,获得积分10
11秒前
无花果应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
ziyue应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
ziyue应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得30
11秒前
yy发布了新的文献求助10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
ziyue应助科研通管家采纳,获得10
12秒前
12秒前
GQC完成签到,获得积分10
13秒前
沉默智宸完成签到 ,获得积分10
13秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206581
求助须知:如何正确求助?哪些是违规求助? 2856095
关于积分的说明 8102312
捐赠科研通 2521097
什么是DOI,文献DOI怎么找? 1354154
科研通“疑难数据库(出版商)”最低求助积分说明 641973
邀请新用户注册赠送积分活动 613167