清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Parameter-Free Robust Ensemble Framework of Fuzzy Clustering

聚类分析 计算机科学 模糊聚类 离群值 数据挖掘 CURE数据聚类算法 超参数 相关聚类 初始化 光谱聚类 数据流聚类 数学 算法 人工智能 程序设计语言
作者
Zhaoyin Shi,Long Chen,Weiping Ding,Chuanbin Zhang,Yingxu Wang
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (12): 4205-4219 被引量:10
标识
DOI:10.1109/tfuzz.2023.3277692
摘要

The ensemble of fuzzy clustering can address the problems presented in the base clustering, such as fluctuations in results due to random initialization and performance degradation due to outliers. However, the performance of fuzzy clustering ensembles is still hampered by some challenges that include misaligned membership matrices, loss of information in the cosimilarity matrix, large storage space, unstable ensemble results due to an additional reclustering, the need for original data information for assistance, etc. To address these issues, we propose a parameter-free robust ensemble framework for fuzzy clustering. After obtaining the set of membership matrices, we cascade these membership matrices and mine the latent spectral matrix of the raw data. Benefiting from this step, we obtain global features of the dataset without knowing the specific data. Then, our framework uses transition matrices to solve the alignment problem, avoiding the storage of large-scale matrices. Most importantly, we introduce a robust weighted mechanism in the optimization model, where each base clustering is adaptively adjusted and the effect of outliers is suppressed by a robust function. In addition, the model yields the results as a membership matrix, which produces the exact partition results directly without any subsequent clustering operations. Finally, since our model is a parameter-free model, the setting of hyperparameters is avoided and the applicability of the model is improved as well. The effective algorithm of the optimization model is derived and its time complexity and convergence are analyzed. The results of competitive experiments on benchmark data show that the proposed ensemble framework is effective compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
22秒前
SCI完成签到,获得积分10
58秒前
1分钟前
直率的笑翠完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
百里幻竹发布了新的文献求助10
2分钟前
英姑应助百里幻竹采纳,获得10
3分钟前
3分钟前
3分钟前
朴素的山蝶完成签到 ,获得积分10
3分钟前
3分钟前
百里幻竹发布了新的文献求助10
3分钟前
毛毛完成签到,获得积分10
3分钟前
科研通AI2S应助百里幻竹采纳,获得10
3分钟前
3分钟前
123完成签到 ,获得积分10
4分钟前
4分钟前
百里幻竹发布了新的文献求助10
4分钟前
4分钟前
Demi_Ming完成签到,获得积分10
4分钟前
在水一方应助百里幻竹采纳,获得10
4分钟前
4分钟前
4分钟前
百里幻竹发布了新的文献求助10
4分钟前
5分钟前
5分钟前
blm发布了新的文献求助10
5分钟前
5分钟前
5分钟前
英姑应助blm采纳,获得10
5分钟前
华仔应助百里幻竹采纳,获得10
5分钟前
Bella完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460124
求助须知:如何正确求助?哪些是违规求助? 3054392
关于积分的说明 9041963
捐赠科研通 2743768
什么是DOI,文献DOI怎么找? 1505243
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694887