已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-Level Transitional Contrast Learning for Personalized Image Aesthetics Assessment

对比度(视觉) 计算机科学 计算机视觉 人工智能 人机交互 多媒体
作者
Zhichao Yang,Leida Li,Yuzhe Yang,Yaqian Li,Weisi Lin
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 1944-1956 被引量:10
标识
DOI:10.1109/tmm.2023.3290479
摘要

Personalized image aesthetics assessment (PIAA) is aimed at modeling the unique aesthetic preferences of individuals, based on which personalized aesthetic scores are predicted. People have different standards for image aesthetics, and accordingly, images rated at the same aesthetic level by different users explicitly reveal their aesthetic preferences. However, previous PIAA models treat each individual as an isolated optimization target, failing to take full advantage of the contrastive information among users. Further, although people's aesthetic preferences are unique, they still share some commonalities, meaning that PIAA models could be built on the basis of generic aesthetics. Motivated by the above facts, this article presents a Multi-level Transitional Contrast Learning (MTCL) framework for PIAA by transiting features from generic aesthetics to personalized aesthetics via contrastive learning. First, a generic image aesthetics assessment network is pre-trained to learn the common aesthetic features. Then, image sets rated to have the same aesthetic levels by different users are employed to learn the differentiated aesthetic features through multiple level-wise contrast learning based on the generic aesthetic features. Finally, a target user's PIAA model is built by integrating generic and differentiated aesthetic features. Extensive experiments on four benchmark PIAA databases demonstrate that the proposed MTCL model outperforms the state-of-the-arts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
亚米发布了新的文献求助10
刚刚
淡淡的香发布了新的文献求助10
1秒前
1秒前
莫力布林完成签到 ,获得积分10
3秒前
玻璃杯发布了新的文献求助10
4秒前
5秒前
5秒前
WU完成签到,获得积分10
5秒前
香蕉以菱发布了新的文献求助10
6秒前
Jasper应助欢呼的访枫采纳,获得10
6秒前
bswxy发布了新的文献求助10
9秒前
yyd完成签到 ,获得积分10
9秒前
10秒前
突突突然悟了完成签到,获得积分10
10秒前
大个应助wy采纳,获得10
10秒前
兔兔不睡觉完成签到 ,获得积分10
12秒前
12秒前
科研通AI6应助细腻的半仙采纳,获得10
12秒前
科研通AI6应助feng采纳,获得10
13秒前
亚米完成签到,获得积分10
13秒前
malucia完成签到,获得积分10
13秒前
14秒前
blue发布了新的文献求助10
15秒前
15秒前
kath发布了新的文献求助10
15秒前
15秒前
16秒前
打打应助科研通管家采纳,获得30
16秒前
思源应助科研通管家采纳,获得10
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
16秒前
CipherSage应助阔达的秀发采纳,获得10
17秒前
BowieHuang应助香蕉以菱采纳,获得10
17秒前
18秒前
19秒前
20秒前
monica发布了新的文献求助20
21秒前
辻渃完成签到 ,获得积分10
21秒前
幸运星完成签到,获得积分20
22秒前
爆米花应助可靠的寒风采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644177
求助须知:如何正确求助?哪些是违规求助? 4763055
关于积分的说明 15023932
捐赠科研通 4802413
什么是DOI,文献DOI怎么找? 2567430
邀请新用户注册赠送积分活动 1525174
关于科研通互助平台的介绍 1484663