Multi-Level Transitional Contrast Learning for Personalized Image Aesthetics Assessment

对比度(视觉) 计算机科学 计算机视觉 人工智能 人机交互 多媒体
作者
Zhichao Yang,Leida Li,Yuzhe Yang,Yaqian Li,Weisi Lin
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 1944-1956 被引量:10
标识
DOI:10.1109/tmm.2023.3290479
摘要

Personalized image aesthetics assessment (PIAA) is aimed at modeling the unique aesthetic preferences of individuals, based on which personalized aesthetic scores are predicted. People have different standards for image aesthetics, and accordingly, images rated at the same aesthetic level by different users explicitly reveal their aesthetic preferences. However, previous PIAA models treat each individual as an isolated optimization target, failing to take full advantage of the contrastive information among users. Further, although people's aesthetic preferences are unique, they still share some commonalities, meaning that PIAA models could be built on the basis of generic aesthetics. Motivated by the above facts, this article presents a Multi-level Transitional Contrast Learning (MTCL) framework for PIAA by transiting features from generic aesthetics to personalized aesthetics via contrastive learning. First, a generic image aesthetics assessment network is pre-trained to learn the common aesthetic features. Then, image sets rated to have the same aesthetic levels by different users are employed to learn the differentiated aesthetic features through multiple level-wise contrast learning based on the generic aesthetic features. Finally, a target user's PIAA model is built by integrating generic and differentiated aesthetic features. Extensive experiments on four benchmark PIAA databases demonstrate that the proposed MTCL model outperforms the state-of-the-arts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香蕉觅云应助直率初露采纳,获得10
刚刚
包佳梁发布了新的文献求助10
刚刚
丘比特应助wuxunxun2015采纳,获得10
1秒前
1秒前
懒骨头兄应助JABBA采纳,获得10
2秒前
科研通AI6应助洁净雨采纳,获得10
2秒前
Iris完成签到,获得积分10
2秒前
等等有力气完成签到,获得积分10
3秒前
3秒前
兜兜发布了新的文献求助10
3秒前
Yuuuan完成签到,获得积分10
3秒前
刘家成发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
aldeheby应助闷声发采纳,获得10
6秒前
ljy1111发布了新的文献求助10
6秒前
6秒前
6秒前
泅渡完成签到,获得积分20
7秒前
vigor完成签到 ,获得积分10
7秒前
7秒前
8秒前
逗逗发布了新的文献求助10
8秒前
orixero应助Iris采纳,获得10
8秒前
8秒前
鹅鹅完成签到 ,获得积分10
8秒前
hard完成签到,获得积分10
9秒前
CocoGabrielle完成签到,获得积分10
9秒前
9秒前
的奖学金喜欢喜欢大呼小叫难受完成签到 ,获得积分10
10秒前
ABC的FGH发布了新的文献求助10
10秒前
10秒前
思源应助韩妙采纳,获得10
10秒前
研友_8yN60L完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
子晏发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618526
求助须知:如何正确求助?哪些是违规求助? 4703500
关于积分的说明 14922583
捐赠科研通 4757805
什么是DOI,文献DOI怎么找? 2550140
邀请新用户注册赠送积分活动 1512973
关于科研通互助平台的介绍 1474342