Multi-Level Transitional Contrast Learning for Personalized Image Aesthetics Assessment

对比度(视觉) 计算机科学 计算机视觉 人工智能 人机交互 多媒体
作者
Zhichao Yang,Leida Li,Yuzhe Yang,Yaqian Li,Weisi Lin
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 1944-1956 被引量:10
标识
DOI:10.1109/tmm.2023.3290479
摘要

Personalized image aesthetics assessment (PIAA) is aimed at modeling the unique aesthetic preferences of individuals, based on which personalized aesthetic scores are predicted. People have different standards for image aesthetics, and accordingly, images rated at the same aesthetic level by different users explicitly reveal their aesthetic preferences. However, previous PIAA models treat each individual as an isolated optimization target, failing to take full advantage of the contrastive information among users. Further, although people's aesthetic preferences are unique, they still share some commonalities, meaning that PIAA models could be built on the basis of generic aesthetics. Motivated by the above facts, this article presents a Multi-level Transitional Contrast Learning (MTCL) framework for PIAA by transiting features from generic aesthetics to personalized aesthetics via contrastive learning. First, a generic image aesthetics assessment network is pre-trained to learn the common aesthetic features. Then, image sets rated to have the same aesthetic levels by different users are employed to learn the differentiated aesthetic features through multiple level-wise contrast learning based on the generic aesthetic features. Finally, a target user's PIAA model is built by integrating generic and differentiated aesthetic features. Extensive experiments on four benchmark PIAA databases demonstrate that the proposed MTCL model outperforms the state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
三点发布了新的文献求助10
刚刚
刚刚
1秒前
2秒前
2秒前
核桃发布了新的文献求助10
3秒前
繁星完成签到,获得积分10
4秒前
8R60d8应助故意的秋烟采纳,获得10
4秒前
my发布了新的文献求助10
5秒前
5秒前
称心的高丽完成签到 ,获得积分10
5秒前
天天快乐应助一二采纳,获得10
5秒前
斯文墨镜发布了新的文献求助10
7秒前
邱化兴完成签到,获得积分10
7秒前
上官若男应助77采纳,获得10
7秒前
LOYAL发布了新的文献求助10
7秒前
文文发布了新的文献求助10
8秒前
8秒前
xs完成签到 ,获得积分10
9秒前
斯文墨镜完成签到,获得积分10
10秒前
元宝发布了新的文献求助10
11秒前
11秒前
李爱国应助微笑小甜瓜采纳,获得10
12秒前
传奇3应助RUI采纳,获得10
12秒前
科研通AI6应助邱化兴采纳,获得10
13秒前
Wri完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
Wri发布了新的文献求助10
16秒前
全球应助Mouser采纳,获得10
17秒前
缓慢的凝云完成签到,获得积分10
17秒前
17秒前
en发布了新的文献求助10
17秒前
LOYAL发布了新的文献求助10
19秒前
研友_VZG7GZ应助元宝采纳,获得10
19秒前
19秒前
打打应助Sandro采纳,获得10
20秒前
guzhfia发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5181532
求助须知:如何正确求助?哪些是违规求助? 4368481
关于积分的说明 13603244
捐赠科研通 4219672
什么是DOI,文献DOI怎么找? 2314180
邀请新用户注册赠送积分活动 1312904
关于科研通互助平台的介绍 1261591