Multi-Level Transitional Contrast Learning for Personalized Image Aesthetics Assessment

对比度(视觉) 计算机科学 计算机视觉 人工智能 人机交互 多媒体
作者
Zhichao Yang,Leida Li,Yuzhe Yang,Yaqian Li,Weisi Lin
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 1944-1956 被引量:10
标识
DOI:10.1109/tmm.2023.3290479
摘要

Personalized image aesthetics assessment (PIAA) is aimed at modeling the unique aesthetic preferences of individuals, based on which personalized aesthetic scores are predicted. People have different standards for image aesthetics, and accordingly, images rated at the same aesthetic level by different users explicitly reveal their aesthetic preferences. However, previous PIAA models treat each individual as an isolated optimization target, failing to take full advantage of the contrastive information among users. Further, although people's aesthetic preferences are unique, they still share some commonalities, meaning that PIAA models could be built on the basis of generic aesthetics. Motivated by the above facts, this article presents a Multi-level Transitional Contrast Learning (MTCL) framework for PIAA by transiting features from generic aesthetics to personalized aesthetics via contrastive learning. First, a generic image aesthetics assessment network is pre-trained to learn the common aesthetic features. Then, image sets rated to have the same aesthetic levels by different users are employed to learn the differentiated aesthetic features through multiple level-wise contrast learning based on the generic aesthetic features. Finally, a target user's PIAA model is built by integrating generic and differentiated aesthetic features. Extensive experiments on four benchmark PIAA databases demonstrate that the proposed MTCL model outperforms the state-of-the-arts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ming完成签到,获得积分10
1秒前
1秒前
gao456789发布了新的文献求助10
1秒前
怡然凝云发布了新的文献求助10
1秒前
Harry应助longer采纳,获得10
1秒前
Harry应助longer采纳,获得10
2秒前
2秒前
852应助花灯王子采纳,获得10
2秒前
乔宇完成签到,获得积分10
2秒前
一个饼发布了新的文献求助10
3秒前
yww完成签到,获得积分10
3秒前
研友_VZG7GZ应助kkkkkk8采纳,获得10
3秒前
4秒前
怡然雁风发布了新的文献求助10
4秒前
星辰大海应助shalomia采纳,获得10
4秒前
温柔的擎完成签到,获得积分10
4秒前
优雅醉山发布了新的文献求助10
5秒前
jieni发布了新的文献求助10
5秒前
我根本没长尾巴完成签到,获得积分10
5秒前
5秒前
5秒前
冷傲士萧完成签到,获得积分10
6秒前
皓月星辰发布了新的文献求助10
6秒前
7秒前
勤劳影子发布了新的文献求助10
8秒前
qrr发布了新的文献求助10
8秒前
科研通AI6应助开朗的念云采纳,获得10
9秒前
orixero应助认真谷雪采纳,获得10
9秒前
科研通AI6应助缓慢的若枫采纳,获得10
9秒前
桂花乌龙发布了新的文献求助10
9秒前
9秒前
10秒前
整齐飞凤完成签到 ,获得积分10
10秒前
秋海棠发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
zxc完成签到,获得积分10
10秒前
10秒前
orixero应助雷培采纳,获得10
10秒前
11秒前
roundtree发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526338
求助须知:如何正确求助?哪些是违规求助? 4616396
关于积分的说明 14553657
捐赠科研通 4554678
什么是DOI,文献DOI怎么找? 2496015
邀请新用户注册赠送积分活动 1476342
关于科研通互助平台的介绍 1447998