亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Level Transitional Contrast Learning for Personalized Image Aesthetics Assessment

对比度(视觉) 计算机科学 计算机视觉 人工智能 人机交互 多媒体
作者
Zhichao Yang,Leida Li,Yuzhe Yang,Yaqian Li,Weisi Lin
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 1944-1956 被引量:10
标识
DOI:10.1109/tmm.2023.3290479
摘要

Personalized image aesthetics assessment (PIAA) is aimed at modeling the unique aesthetic preferences of individuals, based on which personalized aesthetic scores are predicted. People have different standards for image aesthetics, and accordingly, images rated at the same aesthetic level by different users explicitly reveal their aesthetic preferences. However, previous PIAA models treat each individual as an isolated optimization target, failing to take full advantage of the contrastive information among users. Further, although people's aesthetic preferences are unique, they still share some commonalities, meaning that PIAA models could be built on the basis of generic aesthetics. Motivated by the above facts, this article presents a Multi-level Transitional Contrast Learning (MTCL) framework for PIAA by transiting features from generic aesthetics to personalized aesthetics via contrastive learning. First, a generic image aesthetics assessment network is pre-trained to learn the common aesthetic features. Then, image sets rated to have the same aesthetic levels by different users are employed to learn the differentiated aesthetic features through multiple level-wise contrast learning based on the generic aesthetic features. Finally, a target user's PIAA model is built by integrating generic and differentiated aesthetic features. Extensive experiments on four benchmark PIAA databases demonstrate that the proposed MTCL model outperforms the state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
R喻andom完成签到,获得积分10
19秒前
43秒前
50秒前
酷波er应助拜无忧采纳,获得10
56秒前
桃桃完成签到 ,获得积分10
59秒前
今后应助三点水采纳,获得10
2分钟前
思源应助ykswz99采纳,获得30
2分钟前
2分钟前
2分钟前
三点水发布了新的文献求助10
2分钟前
雷俊鹏发布了新的文献求助10
2分钟前
共享精神应助雷俊鹏采纳,获得10
2分钟前
artemis发布了新的文献求助200
2分钟前
Jasper应助三点水采纳,获得10
3分钟前
3分钟前
3分钟前
LC完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
隐形曼青应助璀璨的饺子采纳,获得10
4分钟前
4分钟前
火星上小土豆完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
七宝发布了新的文献求助10
6分钟前
拜无忧发布了新的文献求助10
6分钟前
无花果应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
7分钟前
drtianyunhong发布了新的文献求助10
8分钟前
大模型应助草木青采纳,获得10
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422860
求助须知:如何正确求助?哪些是违规求助? 3023255
关于积分的说明 8903906
捐赠科研通 2710663
什么是DOI,文献DOI怎么找? 1486639
科研通“疑难数据库(出版商)”最低求助积分说明 687127
邀请新用户注册赠送积分活动 682330