重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

The association between PD-1 / PD-L1 expression and clinicopathological features in sarcomatoid renal cell carcinoma

医学 内科学 比例危险模型 免疫组织化学 肾细胞癌 单变量分析 病态的 精确检验 肿瘤科 多元分析 胃肠病学 病理
作者
Yuan Zhao,Zhongyue Shi,Yao Xie,Ning Li,Hong Chen,Mulan Jin
出处
期刊:Asian Journal of Surgery [Elsevier]
卷期号:47 (1): 163-168
标识
DOI:10.1016/j.asjsur.2023.06.065
摘要

Sarcomatoid renal cell carcinoma (sRCC) accounts for about 4%–5% of all kidney cancers. Previous studies showed that PD-1 and PD-L1 expression was higher in sRCC compared to non-sRCC. In the present study, we aimed to investigate PD-1/PD-L1 expression and its association with clinicopathological features in sRCC. The study included 59 patients diagnosed with sRCC between January 2012 and January 2022. The expression of PD-1 and PD-L1 in sRCC was detected by immunohistochemical staining, and its correlation with clinicopathological parameters was analyzed by χ2 test and Fisher exact test. Kaplan–Meier curves and log-rank tests were used to describe the overall survival (OS). The prognostic significance of clinicopathological parameters on OS was assessed by Cox proportional hazards regression analysis. Among the 59 cases, the positive expression of PD-1 and PD-L1 was 34 cases (57.6%) and 37 cases (62.7%), respectively. PD-1 expression was not significantly correlated with any parameters. However, PD-L1 expression was significantly correlated with tumor size and pathologic T stage. OS was shorter in the subgroup of patients with PD-L1-positive sRCC compared with the PD-L1-negative subgroup. There was no statistically significant difference in OS between PD-1-positive and negative subgroups. According to our study, the univariate and multivariate analysis indicated that pathological T3 and T4 was an independent risk factor in PD-1-positive sRCC. We studied the relationship between PD-1/PD-L1 expression and clinicopathological characteristics in sRCC. The findings may provide valuable implications for clinical prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天天快乐应助紧张的毛衣采纳,获得10
1秒前
sunyanghu369发布了新的文献求助10
1秒前
1秒前
小鱼完成签到 ,获得积分10
1秒前
lsc发布了新的文献求助30
1秒前
1秒前
情怀应助四海采纳,获得10
1秒前
2秒前
2秒前
等待的凌晴完成签到,获得积分10
2秒前
2秒前
HRB完成签到,获得积分10
3秒前
SciGPT应助重要白桃采纳,获得10
3秒前
3秒前
3秒前
合适的自行车完成签到 ,获得积分10
3秒前
blank发布了新的文献求助10
4秒前
NexusExplorer应助张祖伦采纳,获得10
4秒前
大头驴完成签到,获得积分10
4秒前
4秒前
上官若男应助胖虎采纳,获得10
4秒前
4秒前
七七完成签到,获得积分10
4秒前
4秒前
wy.he应助小新采纳,获得10
4秒前
Jeux完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
浮游应助FLZLC采纳,获得10
5秒前
赘婿应助吃颗电池采纳,获得10
5秒前
翻翻CHEN发布了新的文献求助10
5秒前
陈梦鼠发布了新的文献求助10
6秒前
6秒前
充电宝应助mildjorker采纳,获得20
6秒前
6秒前
大哥门完成签到,获得积分10
7秒前
axz完成签到,获得积分10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467299
求助须知:如何正确求助?哪些是违规求助? 4571085
关于积分的说明 14328325
捐赠科研通 4497634
什么是DOI,文献DOI怎么找? 2464057
邀请新用户注册赠送积分活动 1452861
关于科研通互助平台的介绍 1427654