Towards Reliable Verification of Unauthorized Data Usage in Personalized Text-to-Image Diffusion Models

计算机科学 图像(数学) 扩散 数据挖掘 情报检索 计算机安全 计算机视觉 物理 热力学
作者
Boheng Li,Yanhao Wei,Yankai Fu,Zhenting Wang,Yiming Li,Jie Zhang,Run Wang,Tianwei Zhang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.10437
摘要

Text-to-image diffusion models are pushing the boundaries of what generative AI can achieve in our lives. Beyond their ability to generate general images, new personalization techniques have been proposed to customize the pre-trained base models for crafting images with specific themes or styles. Such a lightweight solution, enabling AI practitioners and developers to easily build their own personalized models, also poses a new concern regarding whether the personalized models are trained from unauthorized data. A promising solution is to proactively enable data traceability in generative models, where data owners embed external coatings (e.g., image watermarks or backdoor triggers) onto the datasets before releasing. Later the models trained over such datasets will also learn the coatings and unconsciously reproduce them in the generated mimicries, which can be extracted and used as the data usage evidence. However, we identify the existing coatings cannot be effectively learned in personalization tasks, making the corresponding verification less reliable. In this paper, we introduce SIREN, a novel methodology to proactively trace unauthorized data usage in black-box personalized text-to-image diffusion models. Our approach optimizes the coating in a delicate way to be recognized by the model as a feature relevant to the personalization task, thus significantly improving its learnability. We also utilize a human perceptual-aware constraint, a hypersphere classification technique, and a hypothesis-testing-guided verification method to enhance the stealthiness and detection accuracy of the coating. The effectiveness of SIREN is verified through extensive experiments on a diverse set of benchmark datasets, models, and learning algorithms. SIREN is also effective in various real-world scenarios and evaluated against potential countermeasures. Our code is publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
腼腆的恶天完成签到,获得积分10
2秒前
111发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
周子完成签到,获得积分10
6秒前
6秒前
阿rain发布了新的文献求助10
6秒前
7秒前
7秒前
shine0king完成签到,获得积分10
8秒前
8秒前
研友_VZG7GZ应助土土b采纳,获得10
9秒前
Sephirex发布了新的文献求助10
9秒前
10秒前
fy发布了新的文献求助10
10秒前
12秒前
阿萨大大发布了新的文献求助30
12秒前
13秒前
14秒前
斯文败类应助高高白猫采纳,获得10
14秒前
Emma发布了新的文献求助10
14秒前
111完成签到,获得积分10
16秒前
17秒前
17秒前
18秒前
18秒前
隐形曼青应助姝飞糊涂采纳,获得10
18秒前
闪闪的妙竹完成签到 ,获得积分10
18秒前
future完成签到 ,获得积分10
19秒前
shine0king发布了新的文献求助10
19秒前
mj发布了新的文献求助10
20秒前
寂寞的黑夜完成签到,获得积分10
20秒前
20秒前
文静发布了新的文献求助10
21秒前
21秒前
21秒前
xiaohuang完成签到,获得积分10
22秒前
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769651
求助须知:如何正确求助?哪些是违规求助? 3314720
关于积分的说明 10173463
捐赠科研通 3030075
什么是DOI,文献DOI怎么找? 1662585
邀请新用户注册赠送积分活动 795040
科研通“疑难数据库(出版商)”最低求助积分说明 756519