GRNet: a graph reasoning network for enhanced multi-modal learning in scene text recognition

计算机科学 情态动词 人工智能 图形 自然语言处理 理论计算机科学 材料科学 高分子化学
作者
Zeguang Jia,Jianming Wang,Rize Jin
出处
期刊:The Computer Journal [Oxford University Press]
标识
DOI:10.1093/comjnl/bxae085
摘要

Abstract Recent advancements in scene text recognition have predominantly focused on leveraging textual semantics. However, an over-reliance on linguistic priors can impede a model’s ability to handle irregular text scenes, including non-standard word usage, occlusions, severe distortions, or stretching. The key challenges lie in effectively localizing occlusions, perceiving multi-scale text, and inferring text based on scene context. To address these challenges and enhance visual capabilities, we introduce the Graph Reasoning Model (GRM). The GRM employs a novel feature fusion method to align spatial context information across different scales, beginning with a feature aggregation stage that extracts rich spatial contextual information from various feature maps. Visual reasoning representations are then obtained through graph convolution. We integrate the GRM module with a language model to form a two-stream architecture called GRNet. This architecture combines pure visual predictions with joint visual-linguistic predictions to produce the final recognition results. Additionally, we propose a dynamic iteration refinement for the language model to prevent over-correction of prediction results, ensuring a balanced contribution from both visual and linguistic cues. Extensive experiments demonstrate that GRNet achieves state-of-the-art average recognition accuracy across six mainstream benchmarks. These results highlight the efficacy of our multi-modal approach in scene text recognition, particularly in challenging scenarios where visual reasoning plays a crucial role.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潸潸发布了新的文献求助10
刚刚
脆弱的仙人掌完成签到,获得积分20
刚刚
成哥发布了新的文献求助10
刚刚
灵巧的坤完成签到,获得积分10
1秒前
王某人完成签到 ,获得积分10
1秒前
欢呼的明雪完成签到,获得积分10
2秒前
2秒前
嘉禾望岗发布了新的文献求助10
2秒前
大橙子完成签到,获得积分10
2秒前
东北信风完成签到 ,获得积分10
2秒前
今后应助祝顺遂采纳,获得10
2秒前
NADA完成签到,获得积分10
3秒前
长安完成签到,获得积分10
3秒前
AA完成签到,获得积分10
3秒前
NANA发布了新的文献求助10
3秒前
5秒前
5秒前
6秒前
8秒前
8秒前
9秒前
科研通AI5应助无悔呀采纳,获得10
9秒前
9秒前
littlewhite关注了科研通微信公众号
10秒前
10秒前
零点起步完成签到,获得积分10
10秒前
慕青应助大力的含卉采纳,获得10
10秒前
善良过客发布了新的文献求助10
11秒前
11秒前
11秒前
dildil发布了新的文献求助10
11秒前
11秒前
hu970发布了新的文献求助10
12秒前
12秒前
王思鲁发布了新的文献求助30
12秒前
七个小矮人完成签到,获得积分10
13秒前
Aria完成签到,获得积分10
13秒前
感性的安露应助结实雪卉采纳,获得20
14秒前
零点起步发布了新的文献求助10
15秒前
故意的傲玉应助Ll采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759