Integrating machine and deep learning technologies in green buildings for enhanced energy efficiency and environmental sustainability

计算机科学 机器学习 人工智能 规范化(社会学) 预处理器 可持续设计 深度学习 持续性 分类 过程(计算) 数据预处理 数据挖掘 算法 生态学 人类学 生物 操作系统 社会学
作者
Shahid Mahmood,Huaping Sun,El-Sayed M. El-kenawy,Asifa Iqbal,Amal H. Alharbi,Doaa Sami Khafaga
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-70519-y
摘要

A green building (GB) is a design idea that integrates environmentally conscious technology and sustainable procedures throughout the building's life cycle. However, because different green requirements and performances are integrated into the building design, the GB design procedure typically takes longer than conventional structures. Machine learning (ML) and other advanced artificial intelligence (AI), such as DL techniques, are frequently utilized to assist designers in completing their work more quickly and precisely. Therefore, this study aims to develop a GB design predictive model utilizing ML and DL techniques to optimize resource consumption, improve occupant comfort, and lessen the environmental effect of the built environment of the GB design process. A dataset ASHARE-884 is applied to the suggested models. An Exploratory Data Analysis (EDA) is applied, which involves cleaning, sorting, and converting the category data into numerical values utilizing label encoding. In data preprocessing, the Z-Score normalization technique is applied to normalize the data. After data analysis and preprocessing, preprocessed data is used as input for Machine learning (ML) such as RF, DT, and Extreme GB, and Stacking and Deep Learning (DL) such as GNN, LSTM, and RNN techniques for green building design to enhance environmental sustainability by addressing different criteria of the GB design process. The performance of the proposed models is assessed using different evaluation metrics such as accuracy, precision, recall and F1-score. The experiment results indicate that the proposed GNN and LSTM models function more accurately and efficiently than conventional DL techniques for environmental sustainability in green buildings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
帅气胡萝卜完成签到 ,获得积分10
3秒前
赶路人发布了新的文献求助10
5秒前
初心发布了新的文献求助10
5秒前
FashionBoy应助一只滚滚猫采纳,获得10
6秒前
领导范儿应助时尚的雅柏采纳,获得10
6秒前
7秒前
7秒前
StevenZhao完成签到,获得积分0
9秒前
wang1882发布了新的文献求助50
9秒前
馒头完成签到 ,获得积分10
9秒前
10秒前
Orange应助初心采纳,获得10
10秒前
10秒前
柔弱的问梅完成签到,获得积分10
11秒前
科目三应助Duolalala采纳,获得10
11秒前
Gena发布了新的文献求助10
12秒前
你好啊发布了新的文献求助10
15秒前
16秒前
顺利南珍发布了新的文献求助10
16秒前
17秒前
19秒前
19秒前
飞逸兴于管弦完成签到,获得积分10
20秒前
图图完成签到 ,获得积分10
21秒前
小霞完成签到 ,获得积分10
24秒前
申思发布了新的文献求助30
24秒前
Gena完成签到,获得积分20
25秒前
tong发布了新的文献求助10
25秒前
情怀应助科研通管家采纳,获得10
25秒前
25秒前
CodeCraft应助科研通管家采纳,获得10
25秒前
SciGPT应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
25秒前
南屿汐月发布了新的文献求助10
25秒前
科研小白发布了新的文献求助10
26秒前
StevenZhao发布了新的文献求助10
27秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137664
求助须知:如何正确求助?哪些是违规求助? 2788576
关于积分的说明 7787679
捐赠科研通 2444950
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023