Sequence Deep Learning for Seismic Ground Response Modeling: 1D-CNN, LSTM, and Transformer Approach

变压器 计算机科学 深度学习 人工神经网络 卷积神经网络 非线性系统 计算 地震学 人工智能 算法 地质学 工程类 物理 量子力学 电压 电气工程
作者
Yong-Jin Choi,Huyen-Tram Nguyen,Taek Hee Han,Youngjin Choi,Jaehun Ahn
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (15): 6658-6658 被引量:1
标识
DOI:10.3390/app14156658
摘要

Accurate seismic ground response analysis is crucial for the design and safety of civil infrastructure and establishing effective mitigation measures against seismic risks and hazards. This is a complex process due to the nonlinear soil properties and complicated underground geometries. As a simplified approach, the one-dimensional wave propagation model, which assumes that seismic waves travel vertically through a horizontally layered medium, is widely adopted for its reasonable performance in many practical applications. This study explores the potential of sequence deep learning models, specifically 1D convolutional neural networks (1D-CNNs), long short-term memory (LSTM) networks, and transformers, as an alternative for seismic ground response modeling. Utilizing ground motion data from the Kiban Kyoshin Network (KiK-net), we train these models to predict ground surface acceleration response spectra based on bedrock motions. The performance of the data-driven models is compared with the conventional equivalent-linear analysis model, SHAKE2000. The results demonstrate that the deep learning models outperform the physics-based model across various sites, with the transformer model exhibiting the smallest average prediction error due to its ability to capture long-range dependencies. The 1D-CNN model also shows a promising performance, albeit with occasional higher errors than the other models. All the data-driven models exhibit efficient computation times of less than 0.4 s for estimation. These findings highlight the potential of sequence deep learning approaches for seismic ground response modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu完成签到,获得积分10
刚刚
小鸟芋圆露露完成签到 ,获得积分10
3秒前
华仔应助别急我先送采纳,获得10
5秒前
FashionBoy应助猩心采纳,获得10
5秒前
bkagyin应助852采纳,获得10
6秒前
oceanao应助陈大侠采纳,获得10
6秒前
FashionBoy应助22222采纳,获得10
8秒前
zwhy发布了新的文献求助10
9秒前
11秒前
11秒前
自然的绿草完成签到 ,获得积分10
16秒前
猩心发布了新的文献求助10
17秒前
852发布了新的文献求助10
17秒前
zhang完成签到,获得积分10
17秒前
lyl完成签到,获得积分10
18秒前
桐桐应助未晞采纳,获得10
21秒前
Akim应助心灵美尔安采纳,获得10
22秒前
Rainbow7完成签到,获得积分10
24秒前
七慕凉发布了新的文献求助10
25秒前
27秒前
陈拾完成签到,获得积分10
27秒前
科研通AI2S应助Pangki采纳,获得10
27秒前
wuzhizhongbin完成签到,获得积分10
28秒前
30秒前
33秒前
英姑应助nakanoizuki采纳,获得10
33秒前
22222发布了新的文献求助10
33秒前
无限的跳跳糖完成签到 ,获得积分10
33秒前
shinysparrow应助陈展峰采纳,获得80
34秒前
自然的绿草关注了科研通微信公众号
36秒前
38秒前
良辰应助Pangki采纳,获得10
38秒前
42秒前
42秒前
123发布了新的文献求助10
46秒前
46秒前
47秒前
wsdsd完成签到,获得积分10
47秒前
nakanoizuki发布了新的文献求助10
48秒前
48秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164170
求助须知:如何正确求助?哪些是违规求助? 2814884
关于积分的说明 7906945
捐赠科研通 2474500
什么是DOI,文献DOI怎么找? 1317533
科研通“疑难数据库(出版商)”最低求助积分说明 631841
版权声明 602228