Sequence Deep Learning for Seismic Ground Response Modeling: 1D-CNN, LSTM, and Transformer Approach

变压器 计算机科学 深度学习 人工神经网络 卷积神经网络 非线性系统 计算 地震学 人工智能 算法 地质学 工程类 物理 量子力学 电压 电气工程
作者
Yong-Jin Choi,Huyen-Tram Nguyen,Taek Hee Han,Youngjin Choi,Jaehun Ahn
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (15): 6658-6658 被引量:1
标识
DOI:10.3390/app14156658
摘要

Accurate seismic ground response analysis is crucial for the design and safety of civil infrastructure and establishing effective mitigation measures against seismic risks and hazards. This is a complex process due to the nonlinear soil properties and complicated underground geometries. As a simplified approach, the one-dimensional wave propagation model, which assumes that seismic waves travel vertically through a horizontally layered medium, is widely adopted for its reasonable performance in many practical applications. This study explores the potential of sequence deep learning models, specifically 1D convolutional neural networks (1D-CNNs), long short-term memory (LSTM) networks, and transformers, as an alternative for seismic ground response modeling. Utilizing ground motion data from the Kiban Kyoshin Network (KiK-net), we train these models to predict ground surface acceleration response spectra based on bedrock motions. The performance of the data-driven models is compared with the conventional equivalent-linear analysis model, SHAKE2000. The results demonstrate that the deep learning models outperform the physics-based model across various sites, with the transformer model exhibiting the smallest average prediction error due to its ability to capture long-range dependencies. The 1D-CNN model also shows a promising performance, albeit with occasional higher errors than the other models. All the data-driven models exhibit efficient computation times of less than 0.4 s for estimation. These findings highlight the potential of sequence deep learning approaches for seismic ground response modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小灰灰完成签到,获得积分0
刚刚
WELXCNK完成签到,获得积分0
刚刚
1秒前
脑洞疼应助Aipoi采纳,获得10
2秒前
落雪慕卿颜完成签到,获得积分10
3秒前
哈哈哈哈完成签到,获得积分10
3秒前
英吉利25发布了新的文献求助10
5秒前
研友_Z7mYwL完成签到,获得积分0
6秒前
阜睿发布了新的文献求助10
6秒前
在水一方应助邵翎365采纳,获得10
7秒前
HY完成签到,获得积分10
8秒前
长江完成签到,获得积分10
8秒前
Zengyuan完成签到,获得积分10
9秒前
风中冰香应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
那时花开应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
lq完成签到,获得积分10
11秒前
12秒前
风中冰香应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得30
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
chrisio应助科研通管家采纳,获得10
12秒前
rabpig应助科研通管家采纳,获得10
12秒前
Sun_1完成签到,获得积分10
12秒前
rabpig应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得20
12秒前
zcl应助科研通管家采纳,获得200
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294370
求助须知:如何正确求助?哪些是违规求助? 4444225
关于积分的说明 13832582
捐赠科研通 4328291
什么是DOI,文献DOI怎么找? 2376049
邀请新用户注册赠送积分活动 1371380
关于科研通互助平台的介绍 1336554