Sequence Deep Learning for Seismic Ground Response Modeling: 1D-CNN, LSTM, and Transformer Approach

变压器 计算机科学 深度学习 人工神经网络 卷积神经网络 非线性系统 计算 地震学 人工智能 算法 地质学 工程类 物理 量子力学 电压 电气工程
作者
Yong-Jin Choi,Huyen-Tram Nguyen,Taek Hee Han,Youngjin Choi,Jaehun Ahn
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:14 (15): 6658-6658 被引量:1
标识
DOI:10.3390/app14156658
摘要

Accurate seismic ground response analysis is crucial for the design and safety of civil infrastructure and establishing effective mitigation measures against seismic risks and hazards. This is a complex process due to the nonlinear soil properties and complicated underground geometries. As a simplified approach, the one-dimensional wave propagation model, which assumes that seismic waves travel vertically through a horizontally layered medium, is widely adopted for its reasonable performance in many practical applications. This study explores the potential of sequence deep learning models, specifically 1D convolutional neural networks (1D-CNNs), long short-term memory (LSTM) networks, and transformers, as an alternative for seismic ground response modeling. Utilizing ground motion data from the Kiban Kyoshin Network (KiK-net), we train these models to predict ground surface acceleration response spectra based on bedrock motions. The performance of the data-driven models is compared with the conventional equivalent-linear analysis model, SHAKE2000. The results demonstrate that the deep learning models outperform the physics-based model across various sites, with the transformer model exhibiting the smallest average prediction error due to its ability to capture long-range dependencies. The 1D-CNN model also shows a promising performance, albeit with occasional higher errors than the other models. All the data-driven models exhibit efficient computation times of less than 0.4 s for estimation. These findings highlight the potential of sequence deep learning approaches for seismic ground response modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
楚江南完成签到,获得积分10
刚刚
超越俗尘完成签到,获得积分10
刚刚
ariaooo完成签到,获得积分10
刚刚
吕晓飞发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
环游世界完成签到 ,获得积分10
1秒前
dd完成签到,获得积分10
1秒前
张文静发布了新的文献求助10
2秒前
bkagyin应助Giroro_roro采纳,获得10
2秒前
桐桐应助fang采纳,获得10
3秒前
3秒前
turquoise应助zzjl采纳,获得10
3秒前
糖糖糖唐完成签到,获得积分10
3秒前
孙福禄应助quan采纳,获得10
3秒前
小蘑菇应助黑化小狗采纳,获得10
4秒前
JamesPei应助忐忑的远山采纳,获得20
4秒前
端庄不斜完成签到,获得积分10
4秒前
5秒前
今后应助外向的新儿采纳,获得10
5秒前
小锤发布了新的文献求助10
5秒前
HanruiWang完成签到,获得积分10
5秒前
6秒前
bkagyin应助机灵的怀绿采纳,获得10
6秒前
meiwei完成签到,获得积分10
7秒前
hw20010926完成签到 ,获得积分10
7秒前
dtf完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
松松关注了科研通微信公众号
9秒前
9秒前
大胆的以冬完成签到,获得积分10
9秒前
大方的觅海完成签到,获得积分10
10秒前
只如初发布了新的文献求助10
10秒前
SYLH应助斯文火龙果采纳,获得10
10秒前
易安发布了新的文献求助10
10秒前
木桶人plus完成签到 ,获得积分10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650