Sequence Deep Learning for Seismic Ground Response Modeling: 1D-CNN, LSTM, and Transformer Approach

变压器 计算机科学 深度学习 人工神经网络 卷积神经网络 非线性系统 计算 地震学 人工智能 算法 地质学 工程类 物理 量子力学 电压 电气工程
作者
Yong-Jin Choi,Huyen-Tram Nguyen,Taek Hee Han,Youngjin Choi,Jaehun Ahn
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (15): 6658-6658 被引量:1
标识
DOI:10.3390/app14156658
摘要

Accurate seismic ground response analysis is crucial for the design and safety of civil infrastructure and establishing effective mitigation measures against seismic risks and hazards. This is a complex process due to the nonlinear soil properties and complicated underground geometries. As a simplified approach, the one-dimensional wave propagation model, which assumes that seismic waves travel vertically through a horizontally layered medium, is widely adopted for its reasonable performance in many practical applications. This study explores the potential of sequence deep learning models, specifically 1D convolutional neural networks (1D-CNNs), long short-term memory (LSTM) networks, and transformers, as an alternative for seismic ground response modeling. Utilizing ground motion data from the Kiban Kyoshin Network (KiK-net), we train these models to predict ground surface acceleration response spectra based on bedrock motions. The performance of the data-driven models is compared with the conventional equivalent-linear analysis model, SHAKE2000. The results demonstrate that the deep learning models outperform the physics-based model across various sites, with the transformer model exhibiting the smallest average prediction error due to its ability to capture long-range dependencies. The 1D-CNN model also shows a promising performance, albeit with occasional higher errors than the other models. All the data-driven models exhibit efficient computation times of less than 0.4 s for estimation. These findings highlight the potential of sequence deep learning approaches for seismic ground response modeling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
donnolea完成签到 ,获得积分10
刚刚
刚刚
22完成签到,获得积分20
刚刚
xx完成签到,获得积分10
1秒前
英姑应助PigaChu采纳,获得10
1秒前
2秒前
2秒前
shiqi完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
Chy20031205发布了新的文献求助10
4秒前
5秒前
zwd完成签到,获得积分10
5秒前
ztt发布了新的文献求助10
5秒前
Glorious完成签到,获得积分10
5秒前
可口可乐完成签到,获得积分10
5秒前
乐乐应助龙仔采纳,获得30
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
jxm完成签到,获得积分10
6秒前
搜集达人应助懒羊羊采纳,获得10
7秒前
7秒前
felix发布了新的文献求助10
7秒前
小前途发布了新的文献求助10
7秒前
林晚停完成签到,获得积分10
7秒前
8秒前
文献快来完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
江江发布了新的文献求助20
8秒前
9秒前
9秒前
9秒前
9秒前
悦耳紫霜发布了新的文献求助10
10秒前
浮游应助ZZZ采纳,获得10
10秒前
9202211125完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665553
求助须知:如何正确求助?哪些是违规求助? 4877312
关于积分的说明 15114485
捐赠科研通 4824825
什么是DOI,文献DOI怎么找? 2582883
邀请新用户注册赠送积分活动 1536919
关于科研通互助平台的介绍 1495370