Deep‐Learning Empowered Customized Chiral Metasurface for Calibration‐Free Biosensing

超材料 材料科学 计算机科学 纳米技术 光子学 校准 生物传感器 光电子学 物理 量子力学
作者
Nan Zhang,Feng Gao,Ride Wang,Zhonglei Shen,Donghai Han,Yuqing Cui,Liuyang Zhang,Chao Chang,Cheng‐Wei Qiu,Xuefeng Chen
出处
期刊:Advanced Materials [Wiley]
标识
DOI:10.1002/adma.202411490
摘要

Abstract As a 2D metamaterial, metasurfaces offer an unprecedented avenue to facilitate light‐matter interactions. The current “one‐by‐one design” method is hindered by time‐consuming, repeated testing within a confined space. However, intelligent design strategies for metasurfaces, limited by data‐driven properties, have rarely been explored. To address this gap, a data iterative strategy based on deep learning, coupled with a global optimization network is proposed, to achieve the customized design of chiral metasurfaces. This methodology is applied to precisely identify different chiral molecules in a label‐free manner. Fundamentally different from the traditional approach of collecting data purely through simulation, the proposed data generation strategy encompasses the entire design space, which is inaccessible by conventional methods. The dataset quality is significantly improved, with a 21‐fold increase in the number of chiral structures exhibiting the desired circular dichroism (CD) response (>0.6). The method's efficacy is validated by a monolayer structure that is easily prepared, demonstrating advanced sensing abilities for enantiomer‐specific analysis of bio‐samples. These results demonstrate the superior capability of data‐driven schemes in photonic design and the potential of chiral metasurface‐based platforms for calibration‐free biosensing applications. The proposed approach will accelerate the development of complex systems for rapid molecular detection, spectroscopic imaging, and other applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Bruce发布了新的文献求助10
刚刚
1秒前
1秒前
MYhang完成签到,获得积分10
1秒前
wxd发布了新的文献求助10
3秒前
3秒前
哈哈发布了新的文献求助10
4秒前
4秒前
西哈哈发布了新的文献求助10
4秒前
科研通AI5应助lili采纳,获得10
4秒前
郑嘻嘻完成签到,获得积分10
4秒前
4秒前
FEI完成签到,获得积分20
4秒前
6秒前
英姑应助顺利的乐枫采纳,获得10
6秒前
6秒前
6秒前
7秒前
木子加y完成签到 ,获得积分10
8秒前
小蘑菇应助Sally采纳,获得10
8秒前
命运的X号完成签到,获得积分10
8秒前
yangyong发布了新的文献求助10
9秒前
9秒前
图图烤肉完成签到,获得积分10
10秒前
ajiaxi完成签到,获得积分10
10秒前
Bruce完成签到,获得积分10
11秒前
英俊的水彤完成签到 ,获得积分10
11秒前
刘金金完成签到,获得积分10
12秒前
12秒前
命运的X号发布了新的文献求助10
12秒前
13秒前
HJJHJH发布了新的文献求助10
13秒前
13秒前
爱听歌的电源完成签到,获得积分10
13秒前
善学以致用应助新的心跳采纳,获得10
13秒前
14秒前
陈梦雨发布了新的文献求助10
15秒前
复杂瑛完成签到,获得积分10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794