Deep‐Learning Empowered Customized Chiral Metasurface for Calibration‐Free Biosensing

超材料 材料科学 计算机科学 纳米技术 光子学 校准 生物传感器 光电子学 物理 量子力学
作者
Nan Zhang,Feng Gao,Ride Wang,Zhonglei Shen,Donghai Han,Yuqing Cui,Liuyang Zhang,Chao Chang,Cheng‐Wei Qiu,Xuefeng Chen
出处
期刊:Advanced Materials [Wiley]
被引量:5
标识
DOI:10.1002/adma.202411490
摘要

Abstract As a 2D metamaterial, metasurfaces offer an unprecedented avenue to facilitate light‐matter interactions. The current “one‐by‐one design” method is hindered by time‐consuming, repeated testing within a confined space. However, intelligent design strategies for metasurfaces, limited by data‐driven properties, have rarely been explored. To address this gap, a data iterative strategy based on deep learning, coupled with a global optimization network is proposed, to achieve the customized design of chiral metasurfaces. This methodology is applied to precisely identify different chiral molecules in a label‐free manner. Fundamentally different from the traditional approach of collecting data purely through simulation, the proposed data generation strategy encompasses the entire design space, which is inaccessible by conventional methods. The dataset quality is significantly improved, with a 21‐fold increase in the number of chiral structures exhibiting the desired circular dichroism (CD) response (>0.6). The method's efficacy is validated by a monolayer structure that is easily prepared, demonstrating advanced sensing abilities for enantiomer‐specific analysis of bio‐samples. These results demonstrate the superior capability of data‐driven schemes in photonic design and the potential of chiral metasurface‐based platforms for calibration‐free biosensing applications. The proposed approach will accelerate the development of complex systems for rapid molecular detection, spectroscopic imaging, and other applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JYQ发布了新的文献求助10
刚刚
jinghong完成签到 ,获得积分10
刚刚
刚刚
复杂的水彤发布了新的文献求助100
刚刚
1秒前
1秒前
wjx发布了新的文献求助10
1秒前
2秒前
小马甲应助Alex采纳,获得10
2秒前
wyl完成签到,获得积分10
3秒前
4秒前
arcremnant完成签到,获得积分10
4秒前
SciGPT应助小太阳采纳,获得10
4秒前
飘逸果汁完成签到,获得积分10
5秒前
yaoqiangshi发布了新的文献求助10
5秒前
SciGPT应助oohQoo采纳,获得10
5秒前
5秒前
云中应助不系舟采纳,获得20
5秒前
王子心完成签到,获得积分10
6秒前
6秒前
6秒前
自觉香旋完成签到,获得积分10
6秒前
华仔应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得10
8秒前
思源应助sean采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
tang完成签到,获得积分10
8秒前
123完成签到,获得积分10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
隐形曼青应助restudy68采纳,获得10
8秒前
古往今来发布了新的文献求助10
8秒前
思源应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
9秒前
ll应助科研通管家采纳,获得10
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978596
求助须知:如何正确求助?哪些是违规求助? 3522689
关于积分的说明 11214402
捐赠科研通 3260158
什么是DOI,文献DOI怎么找? 1799770
邀请新用户注册赠送积分活动 878659
科研通“疑难数据库(出版商)”最低求助积分说明 807033