Deep‐Learning Empowered Customized Chiral Metasurface for Calibration‐Free Biosensing

超材料 材料科学 计算机科学 纳米技术 光子学 校准 生物传感器 光电子学 物理 量子力学
作者
Nan Zhang,Feng Gao,Ride Wang,Zhonglei Shen,Donghai Han,Yuqing Cui,Liuyang Zhang,Chao Chang,Cheng‐Wei Qiu,Xuefeng Chen
出处
期刊:Advanced Materials [Wiley]
标识
DOI:10.1002/adma.202411490
摘要

Abstract As a 2D metamaterial, metasurfaces offer an unprecedented avenue to facilitate light‐matter interactions. The current “one‐by‐one design” method is hindered by time‐consuming, repeated testing within a confined space. However, intelligent design strategies for metasurfaces, limited by data‐driven properties, have rarely been explored. To address this gap, a data iterative strategy based on deep learning, coupled with a global optimization network is proposed, to achieve the customized design of chiral metasurfaces. This methodology is applied to precisely identify different chiral molecules in a label‐free manner. Fundamentally different from the traditional approach of collecting data purely through simulation, the proposed data generation strategy encompasses the entire design space, which is inaccessible by conventional methods. The dataset quality is significantly improved, with a 21‐fold increase in the number of chiral structures exhibiting the desired circular dichroism (CD) response (>0.6). The method's efficacy is validated by a monolayer structure that is easily prepared, demonstrating advanced sensing abilities for enantiomer‐specific analysis of bio‐samples. These results demonstrate the superior capability of data‐driven schemes in photonic design and the potential of chiral metasurface‐based platforms for calibration‐free biosensing applications. The proposed approach will accelerate the development of complex systems for rapid molecular detection, spectroscopic imaging, and other applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西部森林完成签到,获得积分10
1秒前
萍子发布了新的文献求助30
2秒前
念与惜发布了新的文献求助10
2秒前
迷人的冰安完成签到,获得积分10
4秒前
5秒前
6秒前
李剑鸿发布了新的文献求助200
7秒前
杨颜静完成签到,获得积分10
7秒前
9秒前
兴奋的定帮完成签到 ,获得积分10
10秒前
你好发布了新的文献求助10
10秒前
13秒前
甲硝唑发布了新的文献求助10
14秒前
peiqi佩奇发布了新的文献求助10
16秒前
Hou发布了新的文献求助10
17秒前
你好完成签到,获得积分10
17秒前
杨凡完成签到,获得积分20
17秒前
17秒前
20秒前
萍子发布了新的文献求助10
20秒前
CSUST科研一哥应助peiqi佩奇采纳,获得20
21秒前
thirteen完成签到 ,获得积分10
23秒前
2333完成签到,获得积分20
24秒前
含糊的白开水完成签到,获得积分20
25秒前
SunGuangkai发布了新的文献求助200
25秒前
杨凡发布了新的文献求助10
26秒前
peiqi佩奇完成签到,获得积分20
27秒前
科研通AI2S应助小绵羊采纳,获得10
30秒前
30秒前
lili发布了新的文献求助10
33秒前
33秒前
Ava应助xima采纳,获得10
34秒前
36456657应助勤恳冰彤采纳,获得10
35秒前
35秒前
Hou完成签到,获得积分10
36秒前
39秒前
40秒前
洁洁酱发布了新的文献求助10
41秒前
lili完成签到,获得积分10
41秒前
小恐龙完成签到,获得积分10
41秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309724
求助须知:如何正确求助?哪些是违规求助? 2942954
关于积分的说明 8511920
捐赠科研通 2618053
什么是DOI,文献DOI怎么找? 1430781
科研通“疑难数据库(出版商)”最低求助积分说明 664310
邀请新用户注册赠送积分活动 649462