Artificial Intelligence Hybrid Survival Assessment System for Robot-Assisted Proctectomy: A Retrospective Cohort Study

可解释性 医学 队列 人工智能 机器学习 重采样 回顾性队列研究 计算机科学 医学物理学 外科 内科学
作者
Shiqian Zhang,Ge Zhang,Ming Wang,Song‐Bin Guo,Fuqi Wang,Yun Li,Kaisaierjiang Kadier,Zhaokai Zhou,Pengpeng Zhang,Hao Ran,Chuchu Zhang,Quanbo Zhou,Pin Lyu,Shuang Zhao,Jing Wang,Weitang Yuan
出处
期刊:JCO precision oncology [Lippincott Williams & Wilkins]
卷期号: (8) 被引量:2
标识
DOI:10.1200/po.24.00089
摘要

PURPOSE Robotic-assisted proctectomy (RAP) has emerged as the predominant surgical approach for patients with rectal cancer in recent years; although good postoperative patient recovery with accurate prediction is a guarantee of adaptive surveillance management, there is still a lack of easy-to-use prognostic tools and risk scores designed specifically for those patients undergoing RAP. METHODS This study used the electronic health records of 506 RAP participants, including a National Specialist Center for da Vinci Robotic Colorectal Surgery (NSCVRCS) meta cohort, and an independent external validation Sun Yat-sen Memorial Hospital cohort. In the NSCVRCS meta cohort, patients were divided into a discovery cohort (70%, n = 268), where the best-fit model was applied to model our prediction system, RAP-AIscore. Subsequently, an internal validation process for RAP-AIscore was conducted using a replication cohort (30%, n = 116). The study designed and implemented a large-scale artificial intelligence (AI) hybrid framework to identify the best strategy for building a survival assessment system, the RAP-AIscore, from 132 potential modeling scenarios through a combination of iterative cross-validation, Monte Carlo cross-validation, and bootstrap resampling. The 10 variables most relevant to clinical interpretability were identified on the basis of the AI hybrid optimal model values, which helps provide reliable prognostic survival guidance for new patients. RESULTS The consistent evaluation of discrimination, calibration, generalization, and prognostic value across cohorts reaffirmed the accuracy and robust extrapolation capability of this system. The 10 feature variables most associated with clinical interpretability on the basis of Shapley values were identified, facilitating reliable prognostic survival guidance for new patients. CONCLUSION This study introduces a promising and informative tool, the RAP-AIscore, which can be explained through nomograms for interpreting clinical outcomes. It facilitates postoperative risk stratification management and enhances clinical management of prognosis for RAP patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大气黑米完成签到 ,获得积分10
1秒前
2秒前
2秒前
热沙来提发布了新的文献求助10
3秒前
柠檬发布了新的文献求助10
3秒前
4秒前
dy完成签到,获得积分10
4秒前
yan完成签到,获得积分10
5秒前
5秒前
岳莹晓发布了新的文献求助10
5秒前
???完成签到,获得积分10
6秒前
fyy完成签到 ,获得积分10
6秒前
qiao发布了新的文献求助30
8秒前
sunshine完成签到 ,获得积分10
9秒前
zzzy发布了新的文献求助10
9秒前
习月阳完成签到,获得积分10
9秒前
Never stall发布了新的文献求助10
9秒前
10秒前
QingQing发布了新的文献求助10
10秒前
n3pu030036应助red采纳,获得10
12秒前
LFF发布了新的文献求助10
14秒前
QXR完成签到,获得积分10
16秒前
岳莹晓完成签到,获得积分10
16秒前
充电宝应助sdl采纳,获得10
16秒前
17秒前
粗犷的小笼包完成签到,获得积分10
18秒前
搜集达人应助旺仔采纳,获得10
20秒前
21秒前
COY66完成签到,获得积分20
22秒前
22秒前
23秒前
24秒前
hchen完成签到 ,获得积分10
24秒前
COY66发布了新的文献求助20
24秒前
25秒前
li发布了新的文献求助10
25秒前
科研通AI5应助开朗的曼凡采纳,获得10
26秒前
Shnusinap发布了新的文献求助10
26秒前
清秀思卉完成签到 ,获得积分10
27秒前
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774420
求助须知:如何正确求助?哪些是违规求助? 3320102
关于积分的说明 10198473
捐赠科研通 3034719
什么是DOI,文献DOI怎么找? 1665122
邀请新用户注册赠送积分活动 796697
科研通“疑难数据库(出版商)”最低求助积分说明 757549