Trust, Workload and Performance in Human-AI Partnering: The Role of AI Attributes in Solving Classification Problems

工作量 人工智能 计算机科学 知识管理 机器学习 工程类 运筹学 操作系统
作者
Mostaan Lotfalian Saremi,I. Ziv,Onur Asan,Alparslan Emrah Bayrak
出处
期刊:Journal of Mechanical Design 卷期号:147 (1) 被引量:1
标识
DOI:10.1115/1.4065916
摘要

Abstract Intelligent systems have been rapidly evolving and play a pivotal role in assisting individuals across diverse domains, from healthcare to transportation. Understanding the dynamics of human–artificial intelligence (AI) partnering, particularly how humans trust and collaborate with intelligent systems, is becoming increasingly critical to design effective systems. This paper presents an experimental analysis to assess the impact of AI design attributes on users’ trust, workload, and performance when solving classification problems supported by an AI assistant. Specifically, we study the effect of transparency, fairness, and robustness in the design of an AI assistant and analyze the role of participants’ gender and education background on the outcomes. The experiment is conducted with 47 students in undergraduate, master’s, and Ph.D. programs using a drawing game application where the users are asked to recognize incomplete sketches revealed progressively while receiving recommendations from multiple versions of an AI assistant. The results show that when collaborating with the AI, participants achieve a higher performance than their individual performance or the performance of the AI. The results also show that gender does not have an impact on users’ trust and performance when collaborating with different versions of the AI system, whereas education level has a significant impact on the participants’ performance but not on trust. Finally, the impact of design attributes on participants’ trust and performance highly depends on the accuracy of the AI recommendations, and improvements in participants’ performance and trust in some cases come at the expense of increased workload.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
wjx发布了新的文献求助10
2秒前
li发布了新的文献求助10
3秒前
3秒前
3秒前
lzw123456发布了新的文献求助10
3秒前
浩气长存发布了新的文献求助10
3秒前
重要问旋完成签到,获得积分10
3秒前
怕黑香菇发布了新的文献求助10
4秒前
巫马书桃发布了新的文献求助10
4秒前
xzn1123应助Maestro_S采纳,获得10
4秒前
5秒前
阿媛呐完成签到,获得积分10
6秒前
7秒前
夏日天空发布了新的文献求助10
7秒前
哇哇哇哇哇完成签到,获得积分10
8秒前
8秒前
酷波er应助linlin采纳,获得10
10秒前
11秒前
zz77877发布了新的文献求助10
12秒前
苏苏发布了新的文献求助10
12秒前
隐形曼青应助小爱采纳,获得10
12秒前
桐桐应助Zgf采纳,获得10
13秒前
热心的皮发布了新的文献求助10
13秒前
13秒前
13秒前
赘婿应助伶俐惜萱采纳,获得10
13秒前
脑洞疼应助devin578632采纳,获得10
13秒前
senyusing发布了新的文献求助50
13秒前
wd发布了新的文献求助10
14秒前
14秒前
凡凡完成签到 ,获得积分10
14秒前
研友_5Y9X75发布了新的文献求助10
14秒前
科研通AI2S应助TT采纳,获得10
14秒前
15秒前
16秒前
X1x1A0Q1发布了新的文献求助10
16秒前
17秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Publish or Perish: Perceived Benefits versus Unintended Consequences, Second Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3390520
求助须知:如何正确求助?哪些是违规求助? 3002003
关于积分的说明 8801503
捐赠科研通 2688604
什么是DOI,文献DOI怎么找? 1472715
科研通“疑难数据库(出版商)”最低求助积分说明 681081
邀请新用户注册赠送积分活动 673803