SOD‐YOLO: Small Object Detection Network for UAV Aerial Images

计算机科学 细胞生物学 生物
作者
Zhiqian He,Lijie Cao
出处
期刊:Ieej Transactions on Electrical and Electronic Engineering [Wiley]
标识
DOI:10.1002/tee.24195
摘要

With the rapid development of the UAV industry, object detection using UAV has become a research hotspot. However, most current object detection models based on deep learning have large parameter counts and are difficult to deploy on embedded devices with limited memory and computational power. To address this problem, a Small Object Detection network for UAV aerial images SOD‐YOLO based on YOLOv8 is proposed, which can meet the application requirements of resource‐constrained devices while ensuring the detection accuracy. First, cross‐domain fusion attention (CDFA) mechanism is proposed to build the C2f‐Attention module in this paper, which is embedded in the backbone network in order to improve the extraction capability of key object features. Meanwhile, the AIFI_LSPE feature fusion module with improved RT‐DETR and the IoU‐aware query selection mechanism are added to the path aggregation network to improve the accuracy of multi‐scale object detection. In addition, in order to balance the sample size ratio and improve the robustness of the network model, we make a new UAV image dataset named VisDrone2019 Extended Edition (VDEE) using images from the VisDrone2019 and UAVDT public datasets. Finally, Shape‐IoU is used as a loss function to reduce the difference between the object GT frame and the detection frame. Experiments show that SOD‐YOLO has a mAP@0.5 of 42.8% in the VDEE dataset, which is increased by 5.1% over YOLOv8. In the VisDrone2019 dataset mAP@0.5 is 39.2%, an improvement of 5.8% over YOLOv8. © 2024 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诚心绝悟完成签到,获得积分10
1秒前
2秒前
要减肥的鸭胗完成签到,获得积分10
5秒前
5秒前
科目三应助AYu采纳,获得10
6秒前
8秒前
9秒前
10秒前
斯文败类应助1111采纳,获得10
11秒前
3MB完成签到 ,获得积分10
13秒前
ZR应助无脚鸟采纳,获得20
14秒前
15秒前
坦率抽屉完成签到 ,获得积分10
16秒前
17秒前
Orange应助大力的映梦采纳,获得10
17秒前
蔷薇完成签到,获得积分10
18秒前
爱吃芒果果儿完成签到 ,获得积分10
19秒前
charlotte3228发布了新的文献求助10
19秒前
19秒前
daliu完成签到,获得积分10
21秒前
海绵宝宝完成签到,获得积分10
22秒前
故意的篮球完成签到,获得积分20
23秒前
23秒前
24秒前
yinyue发布了新的文献求助10
24秒前
小杨完成签到,获得积分10
24秒前
zz发布了新的文献求助10
24秒前
科yt完成签到,获得积分10
25秒前
王烨发布了新的文献求助10
25秒前
NN大可爱完成签到 ,获得积分10
25秒前
27秒前
我有柳叶刀完成签到,获得积分10
28秒前
28秒前
我是老大应助科研通管家采纳,获得10
29秒前
上官若男应助科研通管家采纳,获得10
29秒前
科目三应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
mmyhn应助科研通管家采纳,获得10
29秒前
打打应助科研通管家采纳,获得10
29秒前
嗯哼应助科研通管家采纳,获得20
29秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082549
求助须知:如何正确求助?哪些是违规求助? 2735847
关于积分的说明 7539036
捐赠科研通 2385432
什么是DOI,文献DOI怎么找? 1264844
科研通“疑难数据库(出版商)”最低求助积分说明 612830
版权声明 597685