SOD‐YOLO: Small Object Detection Network for UAV Aerial Images

计算机科学 细胞生物学 生物
作者
Zhiqian He,Lijie Cao
出处
期刊:Ieej Transactions on Electrical and Electronic Engineering [Wiley]
标识
DOI:10.1002/tee.24195
摘要

With the rapid development of the UAV industry, object detection using UAV has become a research hotspot. However, most current object detection models based on deep learning have large parameter counts and are difficult to deploy on embedded devices with limited memory and computational power. To address this problem, a Small Object Detection network for UAV aerial images SOD‐YOLO based on YOLOv8 is proposed, which can meet the application requirements of resource‐constrained devices while ensuring the detection accuracy. First, cross‐domain fusion attention (CDFA) mechanism is proposed to build the C2f‐Attention module in this paper, which is embedded in the backbone network in order to improve the extraction capability of key object features. Meanwhile, the AIFI_LSPE feature fusion module with improved RT‐DETR and the IoU‐aware query selection mechanism are added to the path aggregation network to improve the accuracy of multi‐scale object detection. In addition, in order to balance the sample size ratio and improve the robustness of the network model, we make a new UAV image dataset named VisDrone2019 Extended Edition (VDEE) using images from the VisDrone2019 and UAVDT public datasets. Finally, Shape‐IoU is used as a loss function to reduce the difference between the object GT frame and the detection frame. Experiments show that SOD‐YOLO has a mAP@0.5 of 42.8% in the VDEE dataset, which is increased by 5.1% over YOLOv8. In the VisDrone2019 dataset mAP@0.5 is 39.2%, an improvement of 5.8% over YOLOv8. © 2024 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ultraviolet发布了新的文献求助10
3秒前
4秒前
5秒前
天天快乐应助知性的采珊采纳,获得10
6秒前
Lucas应助知性的采珊采纳,获得10
6秒前
虚心傲丝发布了新的文献求助30
8秒前
tang_c完成签到,获得积分10
13秒前
乐乐应助宣孤菱采纳,获得10
14秒前
15秒前
争取不秃顶的医学僧完成签到,获得积分10
15秒前
16秒前
漂亮幻莲发布了新的文献求助10
16秒前
虚心傲丝完成签到,获得积分10
16秒前
17秒前
18秒前
glj完成签到,获得积分10
19秒前
19秒前
19秒前
zho发布了新的文献求助10
19秒前
Jasper应助酷炫的面包采纳,获得10
19秒前
榴莲发布了新的文献求助10
19秒前
chinaclfeng完成签到,获得积分10
19秒前
Abai发布了新的文献求助10
20秒前
嗯好22222发布了新的文献求助50
20秒前
alna发布了新的文献求助10
21秒前
23秒前
23秒前
23秒前
不知名网友完成签到,获得积分10
23秒前
Super发布了新的文献求助50
24秒前
25秒前
frequent完成签到,获得积分10
26秒前
Lj完成签到,获得积分10
26秒前
夏天发布了新的文献求助10
26秒前
26秒前
爱你不商量完成签到,获得积分10
26秒前
logic22完成签到,获得积分10
28秒前
XXXXH发布了新的文献求助10
28秒前
压缩机完成签到,获得积分10
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737545
求助须知:如何正确求助?哪些是违规求助? 3281271
关于积分的说明 10024202
捐赠科研通 2998002
什么是DOI,文献DOI怎么找? 1644955
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749794