化学
同轴
管(容器)
核磁共振
放射化学
分析化学(期刊)
色谱法
复合材料
机械工程
物理
工程类
材料科学
作者
Tatsuki Ogura,Masataka Wakayama
标识
DOI:10.1021/acs.analchem.3c05078
摘要
Quantitative nuclear magnetic resonance (qNMR) is an accepted method for determining analyte concentrations using quantitative substances in one spectrum. Conventional qNMR is performed using a mixture of analytes and reference substances. In coaxial-tube NMR, two tubes are used as different solutions, similar to normal NMR spectra. Currently, coaxial tubes with various diameters are available; however, coaxial-tube qNMR is limited, and a general analytical protocol is yet to be proposed. In this study, we established an effective volume ratio (EVR) measurement method using the weight density and qNMR methods. Various analyte concentrations were determined using coaxial-tube qNMR and an SI-traceable reagent. The EVR required for the qNMR concentration calculation was determined using a coefficient of variation (CV) of <1% for an inner tube of ϕ 3 mm or less. The peak integral of each substance was correlated with the effective volume, depending on the abundance of the tube and matched 1H in the solution. The T1 relaxation times differed depending on the substructure, and the T1 values of the formate and OH groups varied for each tube set. Thus, each partial structural characteristic of the peak must be understood before qNMR is performed. The concentrations of various substances, including hygroscopic substances, were determined using coaxial-tube qNMR. Coaxial tubes eliminate the need to mix the analyte with the reference substance; thus, we can quantify the analyte without causing pH and structural changes caused by other mixtures and reuse the analyte for other test systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI