亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

dmPINNs: An Integrated Data-Driven and Mechanism-Based Method for Endpoint Carbon Prediction in BOF

机制(生物学) 碳纤维 计算机科学 环境科学 算法 复合数 认识论 哲学
作者
Yijie Xia,Hongbing Wang,Anjun Xu
出处
期刊:Metals [MDPI AG]
卷期号:14 (8): 926-926
标识
DOI:10.3390/met14080926
摘要

Accurate prediction of endpoint carbon at the dynamic control stage in the converter is crucial for achieving smelting targets. Currently, there are two main methods for converter endpoint prediction: the data-driven method and the mechanism-based method. Data-driven methods exhibit high accuracy but are vulnerable to data quality variations and lack interpretability. Mechanism-based methods provide great interpretability but face challenges in precisely identifying key parameters in the mechanism formula. Inspired by the design concept of physics-informed neural networks (PINNs), an integrated data-driven and mechanism-based method for endpoint carbon prediction in BOF (dmPINNs, data-driven and mechanism-based physics-informed neural networks) is proposed, which has four parts: feature extraction, mechanism-based calculation, data-driven prediction, and integrated prediction. We identify key parameters of the mechanism formula through the neural network to obtain the specified formula for each heat and supervise the training process of the neural network through the mechanism formula to ensure interpretability. Experimental results show that, within the ±0.012% error range, the hit rate of endpoint carbon content using dmPINNs improved by 5.23% compared with the traditional data-driven method and has greater robustness with the supervision of the mechanism formula.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助转转采纳,获得10
8秒前
14秒前
转转发布了新的文献求助10
19秒前
21秒前
iacir33完成签到,获得积分10
48秒前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
桐桐应助科研通管家采纳,获得10
1分钟前
1分钟前
酷酷海豚完成签到,获得积分10
1分钟前
OSASACB完成签到 ,获得积分10
1分钟前
2分钟前
屈煜彬完成签到 ,获得积分10
2分钟前
orixero应助蔡6705采纳,获得10
2分钟前
2分钟前
2分钟前
蔡6705完成签到,获得积分10
2分钟前
蔡6705发布了新的文献求助10
2分钟前
白华苍松完成签到,获得积分10
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
研友_VZG7GZ应助白华苍松采纳,获得10
3分钟前
3分钟前
安详雅绿发布了新的文献求助30
3分钟前
连安阳发布了新的文献求助10
3分钟前
转转发布了新的文献求助10
3分钟前
安详雅绿完成签到,获得积分20
4分钟前
4分钟前
4分钟前
转转发布了新的文献求助50
4分钟前
于yu完成签到 ,获得积分10
4分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
转转发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764316
求助须知:如何正确求助?哪些是违规求助? 5550096
关于积分的说明 15406091
捐赠科研通 4899552
什么是DOI,文献DOI怎么找? 2635769
邀请新用户注册赠送积分活动 1583921
关于科研通互助平台的介绍 1539095