已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

dmPINNs: An Integrated Data-Driven and Mechanism-Based Method for Endpoint Carbon Prediction in BOF

机制(生物学) 碳纤维 计算机科学 环境科学 算法 复合数 认识论 哲学
作者
Yijie Xia,Hongbing Wang,Anjun Xu
出处
期刊:Metals [MDPI AG]
卷期号:14 (8): 926-926
标识
DOI:10.3390/met14080926
摘要

Accurate prediction of endpoint carbon at the dynamic control stage in the converter is crucial for achieving smelting targets. Currently, there are two main methods for converter endpoint prediction: the data-driven method and the mechanism-based method. Data-driven methods exhibit high accuracy but are vulnerable to data quality variations and lack interpretability. Mechanism-based methods provide great interpretability but face challenges in precisely identifying key parameters in the mechanism formula. Inspired by the design concept of physics-informed neural networks (PINNs), an integrated data-driven and mechanism-based method for endpoint carbon prediction in BOF (dmPINNs, data-driven and mechanism-based physics-informed neural networks) is proposed, which has four parts: feature extraction, mechanism-based calculation, data-driven prediction, and integrated prediction. We identify key parameters of the mechanism formula through the neural network to obtain the specified formula for each heat and supervise the training process of the neural network through the mechanism formula to ensure interpretability. Experimental results show that, within the ±0.012% error range, the hit rate of endpoint carbon content using dmPINNs improved by 5.23% compared with the traditional data-driven method and has greater robustness with the supervision of the mechanism formula.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI40应助微笑问寒采纳,获得10
刚刚
Dollar完成签到 ,获得积分10
1秒前
1秒前
howie发布了新的文献求助10
2秒前
xiaolu发布了新的文献求助10
2秒前
2秒前
科研通AI40应助vivia采纳,获得10
3秒前
呜呼发布了新的文献求助10
3秒前
Rain完成签到,获得积分10
4秒前
成熟稳重痴情完成签到,获得积分10
6秒前
7秒前
MAD666完成签到,获得积分10
7秒前
嘻嘻哈哈嘻嘻哈哈完成签到,获得积分10
8秒前
自信富发布了新的文献求助10
9秒前
无花果应助栀子采纳,获得10
9秒前
温馨家园完成签到 ,获得积分10
12秒前
13秒前
13秒前
隐形曼青应助zmh采纳,获得10
14秒前
nicheng完成签到,获得积分10
14秒前
17秒前
怡然远望完成签到 ,获得积分10
17秒前
Iceyxi发布了新的文献求助10
20秒前
上官若男应助krajicek采纳,获得10
20秒前
huang发布了新的文献求助10
23秒前
思源应助Jane采纳,获得10
24秒前
25秒前
28秒前
Hello应助Bonnie采纳,获得10
29秒前
今天没烦恼完成签到 ,获得积分10
30秒前
qqqqq99发布了新的文献求助10
30秒前
深情安青应助xiaolu采纳,获得10
31秒前
星辰大海应助xiaolu采纳,获得10
31秒前
星辰大海应助xiaolu采纳,获得10
31秒前
Ava应助xiaolu采纳,获得10
31秒前
大模型应助xiaolu采纳,获得10
31秒前
田様应助xiaolu采纳,获得10
31秒前
彭于晏应助xiaolu采纳,获得10
31秒前
小二郎应助xiaolu采纳,获得10
31秒前
田様应助xiaolu采纳,获得10
31秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471274
求助须知:如何正确求助?哪些是违规求助? 3064220
关于积分的说明 9087832
捐赠科研通 2754974
什么是DOI,文献DOI怎么找? 1511673
邀请新用户注册赠送积分活动 698575
科研通“疑难数据库(出版商)”最低求助积分说明 698423