Machine learning-based integration develops a multiple programmed cell death signature for predicting the clinical outcome and drug sensitivity in colorectal cancer

肿瘤科 结直肠癌 免疫系统 医学 内科学 列线图 微卫星不稳定性 癌症 免疫学 生物 等位基因 生物化学 微卫星 基因
作者
Chunhong Li,Yuhua Mao,Yi Liu,Jiahua Hu,Chunchun Su,Haiyin Tan,Xianliang Hou,Minglin Ou
出处
期刊:Anti-Cancer Drugs [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/cad.0000000000001654
摘要

Tumorigenesis and treatment are closely associated with various programmed cell death (PCD) patterns. However, the coregulatory role of multiple PCD patterns in colorectal cancer (CRC) remains unknown. In this study, we developed a multiple PCD index (MPCDI) based on 19 PCD patterns using two machine learning algorithms for risk stratification, prognostic prediction, construction of nomograms, immune cell infiltration analysis, and chemotherapeutic drug sensitivity analysis. As a result, in the TCGA-COAD, GSE17536, and GSE29621 cohorts, the MPCDI can effectively distinguished survival outcomes in CRC patients and served as an independent factor for CRC patients. We then explored the immune infiltration landscape in two groups using the nine algorithms and found more overall immune infiltration in the high-MPCDI group. TIDE scores suggested that the increased immune evasion potential and immune checkpoint inhibition therapy may be less effective in the high-MPCDI group. Immunophenoscores indicated that anti-PD1, anti-cytotoxic T-lymphocyte associated antigen 4 (anti-CTLA4), and anti-PD1-CTLA4 combination therapies are less effective in the high-MPCDI group. In addition, the high-MPCDI group was more sensitive to AZD1332, Foretinib, and IGF1R_3801, and insensitive to AZD3759, AZD5438, AZD6482, Erlotinib, GSK591, IAP_5620, and Picolinici-acid, which suggests that the MPCDI can guide drug selection for CRC patients. As a new clinical classifier, the MPCDI can more accurately distinguish CRC patients who benefit from immunotherapy and develop personalized treatment strategies for CRC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
激昂的千萍完成签到 ,获得积分10
刚刚
刚刚
尹冰露发布了新的文献求助10
1秒前
搞怪不斜完成签到,获得积分10
1秒前
aaaa发布了新的文献求助10
1秒前
1秒前
魔幻的雪卉完成签到,获得积分10
1秒前
言言言言完成签到,获得积分10
1秒前
桐桐应助李梦琦采纳,获得10
1秒前
3秒前
EVELYN完成签到,获得积分10
4秒前
包听枫完成签到,获得积分20
4秒前
Ava应助贺知什么书采纳,获得10
4秒前
Zwuijl完成签到,获得积分10
5秒前
外向一一完成签到 ,获得积分10
5秒前
6秒前
学fei了吗完成签到,获得积分10
6秒前
Celeste发布了新的文献求助10
6秒前
SaSa发布了新的文献求助10
6秒前
有魅力的电脑完成签到,获得积分10
7秒前
ASHDSN关注了科研通微信公众号
7秒前
梦花结发布了新的文献求助10
7秒前
壹刻发布了新的文献求助10
7秒前
鱼丸发布了新的文献求助10
8秒前
8秒前
CH完成签到,获得积分10
8秒前
changl2023完成签到,获得积分10
8秒前
9秒前
niu完成签到,获得积分10
9秒前
10秒前
10秒前
yangya应助Luke采纳,获得10
10秒前
鳗鱼口红完成签到,获得积分10
11秒前
11秒前
第一次奋进完成签到,获得积分10
11秒前
fangfang完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299125
求助须知:如何正确求助?哪些是违规求助? 2934137
关于积分的说明 8467404
捐赠科研通 2607589
什么是DOI,文献DOI怎么找? 1423778
科研通“疑难数据库(出版商)”最低求助积分说明 661689
邀请新用户注册赠送积分活动 645351