Building a pelvic organ prolapse diagnostic model using vision transformer on multi‐sequence MRI

可解释性 分级(工程) 卡帕 人工智能 科恩卡帕 医学 磁共振成像 计算机科学 试验装置 放射科 机器学习 数学 几何学 工程类 土木工程
作者
Shaojun Zhu,Xiaoxuan Zhu,Bo Zheng,Maonian Wu,Qiongshan Li,Cheng Qian
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17441
摘要

Abstract Background Although the uterus, bladder, and rectum are distinct organs, their muscular fasciae are often interconnected. Clinical experience suggests that they may share common risk factors and associations. When one organ experiences prolapse, it can potentially affect the neighboring organs. However, the current assessment of disease severity still relies on manual measurements, which can yield varying results depending on the physician, thereby leading to diagnostic inaccuracies. Purpose This study aims to develop a multilabel grading model based on deep learning to classify the degree of prolapse of three organs in the female pelvis using stress magnetic resonance imaging (MRI) and provide interpretable result analysis. Methods We utilized sagittal MRI sequences taken at rest and during maximum Valsalva maneuver from 662 subjects. The training set included 464 subjects, the validation set included 98 subjects, and the test set included 100 subjects (training set n = 464, validation set n = 98, test set n = 100). We designed a feature extraction module specifically for pelvic floor MRI using the vision transformer architecture and employed label masking training strategy and pre‐training methods to enhance model convergence. The grading results were evaluated using Precision, Kappa, Recall, and Area Under the Curve (AUC). To validate the effectiveness of the model, the designed model was compared with classic grading methods. Finally, we provided interpretability charts illustrating the model's operational principles on the grading task. Results In terms of POP grading detection, the model achieved an average Precision, Kappa coefficient, Recall, and AUC of 0.86, 0.77, 0.76, and 0.86, respectively. Compared to existing studies, our model achieved the highest performance metrics. The average time taken to diagnose a patient was 0.38 s. Conclusions The proposed model achieved detection accuracy that is comparable to or even exceeds that of physicians, demonstrating the effectiveness of the vision transformer architecture and label masking training strategy for assisting in the grading of POP under static and maximum Valsalva conditions. This offers a promising option for computer‐aided diagnosis and treatment planning of POP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
LXx发布了新的文献求助10
1秒前
1秒前
无花果应助123柴采纳,获得10
1秒前
1秒前
张小桐完成签到,获得积分10
2秒前
NiNi发布了新的文献求助10
2秒前
浮游应助调皮蛋采纳,获得10
2秒前
谷高高完成签到,获得积分10
2秒前
可怜小爬虫完成签到 ,获得积分10
2秒前
Gins完成签到,获得积分10
3秒前
猕猴桃发布了新的文献求助10
3秒前
白日梦想家完成签到 ,获得积分10
3秒前
3秒前
12345完成签到,获得积分10
3秒前
wrnd发布了新的文献求助10
3秒前
wop111应助不笑猫采纳,获得20
4秒前
林琬琪完成签到,获得积分20
4秒前
LexMz发布了新的文献求助10
5秒前
ding应助健康的书雁采纳,获得10
5秒前
疯狂的胡萝卜完成签到,获得积分10
6秒前
星辰大海应助隔壁采纳,获得10
7秒前
小十七果完成签到,获得积分10
7秒前
妮可粒子完成签到,获得积分10
8秒前
细雨清心发布了新的文献求助10
8秒前
香蕉觅云应助左丘酬海采纳,获得10
9秒前
被动科研发布了新的文献求助10
9秒前
9秒前
谷高高发布了新的文献求助20
9秒前
潇大王完成签到,获得积分10
9秒前
10秒前
10秒前
blue完成签到,获得积分10
10秒前
泡泡完成签到 ,获得积分10
10秒前
威武荔枝发布了新的文献求助20
11秒前
Owen应助小菜采纳,获得10
11秒前
11秒前
12秒前
wrnd完成签到,获得积分10
12秒前
英俊的铭应助豆子采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001747
求助须知:如何正确求助?哪些是违规求助? 4246864
关于积分的说明 13231103
捐赠科研通 4045670
什么是DOI,文献DOI怎么找? 2213151
邀请新用户注册赠送积分活动 1223362
关于科研通互助平台的介绍 1143663