清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Building a pelvic organ prolapse diagnostic model using vision transformer on multi‐sequence MRI

可解释性 分级(工程) 卡帕 人工智能 科恩卡帕 医学 磁共振成像 计算机科学 试验装置 放射科 机器学习 数学 几何学 工程类 土木工程
作者
Shaojun Zhu,Xiaoxuan Zhu,Bo Zheng,Maonian Wu,Qiongshan Li,Cheng Qian
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17441
摘要

Abstract Background Although the uterus, bladder, and rectum are distinct organs, their muscular fasciae are often interconnected. Clinical experience suggests that they may share common risk factors and associations. When one organ experiences prolapse, it can potentially affect the neighboring organs. However, the current assessment of disease severity still relies on manual measurements, which can yield varying results depending on the physician, thereby leading to diagnostic inaccuracies. Purpose This study aims to develop a multilabel grading model based on deep learning to classify the degree of prolapse of three organs in the female pelvis using stress magnetic resonance imaging (MRI) and provide interpretable result analysis. Methods We utilized sagittal MRI sequences taken at rest and during maximum Valsalva maneuver from 662 subjects. The training set included 464 subjects, the validation set included 98 subjects, and the test set included 100 subjects (training set n = 464, validation set n = 98, test set n = 100). We designed a feature extraction module specifically for pelvic floor MRI using the vision transformer architecture and employed label masking training strategy and pre‐training methods to enhance model convergence. The grading results were evaluated using Precision, Kappa, Recall, and Area Under the Curve (AUC). To validate the effectiveness of the model, the designed model was compared with classic grading methods. Finally, we provided interpretability charts illustrating the model's operational principles on the grading task. Results In terms of POP grading detection, the model achieved an average Precision, Kappa coefficient, Recall, and AUC of 0.86, 0.77, 0.76, and 0.86, respectively. Compared to existing studies, our model achieved the highest performance metrics. The average time taken to diagnose a patient was 0.38 s. Conclusions The proposed model achieved detection accuracy that is comparable to or even exceeds that of physicians, demonstrating the effectiveness of the vision transformer architecture and label masking training strategy for assisting in the grading of POP under static and maximum Valsalva conditions. This offers a promising option for computer‐aided diagnosis and treatment planning of POP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
zxq完成签到 ,获得积分10
12秒前
15秒前
什么时候可以睡觉完成签到,获得积分10
24秒前
31秒前
Moto_Fang完成签到,获得积分10
34秒前
邓洁宜完成签到,获得积分10
36秒前
QCB完成签到 ,获得积分0
47秒前
从来都不会放弃zr完成签到,获得积分10
48秒前
鲤鱼山人完成签到 ,获得积分10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
研友_n2rRqn完成签到 ,获得积分10
2分钟前
2分钟前
RC发布了新的文献求助30
2分钟前
BowieHuang应助大盆采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
什么时候可以睡觉关注了科研通微信公众号
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
woxinyouyou完成签到,获得积分0
3分钟前
桦奕兮完成签到 ,获得积分10
3分钟前
森sen完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
聪明怜阳发布了新的文献求助10
4分钟前
酷然完成签到,获得积分10
4分钟前
我是老大应助聪明怜阳采纳,获得10
4分钟前
alex12259完成签到 ,获得积分10
5分钟前
情怀应助RC采纳,获得10
5分钟前
5分钟前
RC发布了新的文献求助10
5分钟前
trophozoite完成签到 ,获得积分10
5分钟前
5分钟前
0m0完成签到 ,获得积分10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
高贵菲菲完成签到,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590599
求助须知:如何正确求助?哪些是违规求助? 4674849
关于积分的说明 14795392
捐赠科研通 4633881
什么是DOI,文献DOI怎么找? 2532863
邀请新用户注册赠送积分活动 1501348
关于科研通互助平台的介绍 1468741