清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Building a pelvic organ prolapse diagnostic model using vision transformer on multi‐sequence MRI

可解释性 分级(工程) 卡帕 人工智能 科恩卡帕 医学 磁共振成像 计算机科学 试验装置 放射科 机器学习 数学 土木工程 几何学 工程类
作者
Shaojun Zhu,Xiaoxuan Zhu,Bo Zheng,Maonian Wu,Qiongshan Li,Cheng Qian
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17441
摘要

Abstract Background Although the uterus, bladder, and rectum are distinct organs, their muscular fasciae are often interconnected. Clinical experience suggests that they may share common risk factors and associations. When one organ experiences prolapse, it can potentially affect the neighboring organs. However, the current assessment of disease severity still relies on manual measurements, which can yield varying results depending on the physician, thereby leading to diagnostic inaccuracies. Purpose This study aims to develop a multilabel grading model based on deep learning to classify the degree of prolapse of three organs in the female pelvis using stress magnetic resonance imaging (MRI) and provide interpretable result analysis. Methods We utilized sagittal MRI sequences taken at rest and during maximum Valsalva maneuver from 662 subjects. The training set included 464 subjects, the validation set included 98 subjects, and the test set included 100 subjects (training set n = 464, validation set n = 98, test set n = 100). We designed a feature extraction module specifically for pelvic floor MRI using the vision transformer architecture and employed label masking training strategy and pre‐training methods to enhance model convergence. The grading results were evaluated using Precision, Kappa, Recall, and Area Under the Curve (AUC). To validate the effectiveness of the model, the designed model was compared with classic grading methods. Finally, we provided interpretability charts illustrating the model's operational principles on the grading task. Results In terms of POP grading detection, the model achieved an average Precision, Kappa coefficient, Recall, and AUC of 0.86, 0.77, 0.76, and 0.86, respectively. Compared to existing studies, our model achieved the highest performance metrics. The average time taken to diagnose a patient was 0.38 s. Conclusions The proposed model achieved detection accuracy that is comparable to or even exceeds that of physicians, demonstrating the effectiveness of the vision transformer architecture and label masking training strategy for assisting in the grading of POP under static and maximum Valsalva conditions. This offers a promising option for computer‐aided diagnosis and treatment planning of POP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鱼女侠完成签到 ,获得积分10
3秒前
黄淮科研小白龙完成签到 ,获得积分10
3秒前
8秒前
crystaler完成签到 ,获得积分10
15秒前
雪山飞龙完成签到,获得积分10
36秒前
研友_ZbP41L完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
阿萌发布了新的文献求助30
1分钟前
gewiyo发布了新的文献求助10
1分钟前
轻松的水壶完成签到 ,获得积分10
1分钟前
1分钟前
可可发布了新的文献求助10
1分钟前
浮游应助Eatanicecube采纳,获得50
1分钟前
顾矜应助细心的语蓉采纳,获得10
1分钟前
Jasper应助可可采纳,获得10
1分钟前
1分钟前
2分钟前
阿萌完成签到,获得积分10
2分钟前
Eatanicecube发布了新的文献求助10
2分钟前
digger2023完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
fane发布了新的文献求助10
2分钟前
2分钟前
fane完成签到,获得积分10
2分钟前
mochalv123完成签到 ,获得积分10
2分钟前
uikymh完成签到 ,获得积分0
2分钟前
细心的语蓉完成签到,获得积分10
2分钟前
雪山飞龙发布了新的文献求助10
3分钟前
可爱沛蓝完成签到 ,获得积分10
3分钟前
喂我完成签到 ,获得积分10
3分钟前
3分钟前
mgiwwk完成签到 ,获得积分10
3分钟前
zzj发布了新的文献求助10
3分钟前
克姑美完成签到 ,获得积分10
3分钟前
zzj关注了科研通微信公众号
3分钟前
海英完成签到,获得积分10
4分钟前
浮游应助xu采纳,获得10
4分钟前
5分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347134
求助须知:如何正确求助?哪些是违规求助? 4481469
关于积分的说明 13947767
捐赠科研通 4379570
什么是DOI,文献DOI怎么找? 2406477
邀请新用户注册赠送积分活动 1399078
关于科研通互助平台的介绍 1372002