Building a pelvic organ prolapse diagnostic model using vision transformer on multi‐sequence MRI

可解释性 分级(工程) 卡帕 人工智能 科恩卡帕 医学 磁共振成像 计算机科学 试验装置 放射科 机器学习 数学 几何学 工程类 土木工程
作者
Shaojun Zhu,Xiaoxuan Zhu,Bo Zheng,Maonian Wu,Qiongshan Li,Cheng Qian
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17441
摘要

Abstract Background Although the uterus, bladder, and rectum are distinct organs, their muscular fasciae are often interconnected. Clinical experience suggests that they may share common risk factors and associations. When one organ experiences prolapse, it can potentially affect the neighboring organs. However, the current assessment of disease severity still relies on manual measurements, which can yield varying results depending on the physician, thereby leading to diagnostic inaccuracies. Purpose This study aims to develop a multilabel grading model based on deep learning to classify the degree of prolapse of three organs in the female pelvis using stress magnetic resonance imaging (MRI) and provide interpretable result analysis. Methods We utilized sagittal MRI sequences taken at rest and during maximum Valsalva maneuver from 662 subjects. The training set included 464 subjects, the validation set included 98 subjects, and the test set included 100 subjects (training set n = 464, validation set n = 98, test set n = 100). We designed a feature extraction module specifically for pelvic floor MRI using the vision transformer architecture and employed label masking training strategy and pre‐training methods to enhance model convergence. The grading results were evaluated using Precision, Kappa, Recall, and Area Under the Curve (AUC). To validate the effectiveness of the model, the designed model was compared with classic grading methods. Finally, we provided interpretability charts illustrating the model's operational principles on the grading task. Results In terms of POP grading detection, the model achieved an average Precision, Kappa coefficient, Recall, and AUC of 0.86, 0.77, 0.76, and 0.86, respectively. Compared to existing studies, our model achieved the highest performance metrics. The average time taken to diagnose a patient was 0.38 s. Conclusions The proposed model achieved detection accuracy that is comparable to or even exceeds that of physicians, demonstrating the effectiveness of the vision transformer architecture and label masking training strategy for assisting in the grading of POP under static and maximum Valsalva conditions. This offers a promising option for computer‐aided diagnosis and treatment planning of POP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangxin150完成签到,获得积分10
刚刚
寒江孤影完成签到,获得积分10
刚刚
yue发布了新的文献求助10
3秒前
3秒前
胡须应助淼队采纳,获得30
4秒前
木木木袁袁袁完成签到,获得积分20
4秒前
寒梅恋雪完成签到,获得积分10
5秒前
自觉的凛完成签到,获得积分10
5秒前
天天快乐应助源来是洲董采纳,获得10
5秒前
75986686完成签到,获得积分10
6秒前
8秒前
学好久完成签到 ,获得积分10
9秒前
a24017完成签到,获得积分10
12秒前
YG完成签到,获得积分10
13秒前
yue完成签到,获得积分10
17秒前
淼队完成签到,获得积分10
18秒前
18秒前
落叶解三秋完成签到,获得积分10
19秒前
Crystal完成签到 ,获得积分10
22秒前
小小酥完成签到,获得积分10
22秒前
等待蚂蚁完成签到 ,获得积分10
23秒前
zgt01发布了新的文献求助10
23秒前
心心完成签到 ,获得积分10
24秒前
123完成签到,获得积分10
25秒前
温超完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助10
25秒前
26秒前
27秒前
Menta1y完成签到,获得积分10
27秒前
czzlancer完成签到,获得积分10
28秒前
汶溢完成签到,获得积分10
28秒前
xsss完成签到,获得积分10
29秒前
TAN完成签到,获得积分10
29秒前
通通通发布了新的文献求助10
30秒前
liudw完成签到,获得积分10
30秒前
丹丹子完成签到 ,获得积分10
31秒前
时光完成签到,获得积分10
31秒前
32秒前
充电宝应助vsvsgo采纳,获得10
34秒前
123完成签到 ,获得积分10
36秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022