Building a pelvic organ prolapse diagnostic model using vision transformer on multi‐sequence MRI

可解释性 分级(工程) 卡帕 人工智能 科恩卡帕 医学 磁共振成像 计算机科学 试验装置 放射科 机器学习 数学 几何学 工程类 土木工程
作者
Shaojun Zhu,Xiaoxuan Zhu,Bo Zheng,Maonian Wu,Qiongshan Li,Cheng Qian
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17441
摘要

Abstract Background Although the uterus, bladder, and rectum are distinct organs, their muscular fasciae are often interconnected. Clinical experience suggests that they may share common risk factors and associations. When one organ experiences prolapse, it can potentially affect the neighboring organs. However, the current assessment of disease severity still relies on manual measurements, which can yield varying results depending on the physician, thereby leading to diagnostic inaccuracies. Purpose This study aims to develop a multilabel grading model based on deep learning to classify the degree of prolapse of three organs in the female pelvis using stress magnetic resonance imaging (MRI) and provide interpretable result analysis. Methods We utilized sagittal MRI sequences taken at rest and during maximum Valsalva maneuver from 662 subjects. The training set included 464 subjects, the validation set included 98 subjects, and the test set included 100 subjects (training set n = 464, validation set n = 98, test set n = 100). We designed a feature extraction module specifically for pelvic floor MRI using the vision transformer architecture and employed label masking training strategy and pre‐training methods to enhance model convergence. The grading results were evaluated using Precision, Kappa, Recall, and Area Under the Curve (AUC). To validate the effectiveness of the model, the designed model was compared with classic grading methods. Finally, we provided interpretability charts illustrating the model's operational principles on the grading task. Results In terms of POP grading detection, the model achieved an average Precision, Kappa coefficient, Recall, and AUC of 0.86, 0.77, 0.76, and 0.86, respectively. Compared to existing studies, our model achieved the highest performance metrics. The average time taken to diagnose a patient was 0.38 s. Conclusions The proposed model achieved detection accuracy that is comparable to or even exceeds that of physicians, demonstrating the effectiveness of the vision transformer architecture and label masking training strategy for assisting in the grading of POP under static and maximum Valsalva conditions. This offers a promising option for computer‐aided diagnosis and treatment planning of POP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落日余晖发布了新的文献求助10
刚刚
刚刚
34101127完成签到,获得积分0
1秒前
1秒前
w野完成签到,获得积分10
2秒前
sweety0721完成签到,获得积分10
3秒前
田様应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
Lucas应助杜ss采纳,获得10
5秒前
2025发布了新的文献求助10
6秒前
善学以致用应助LR采纳,获得10
7秒前
Russell发布了新的文献求助10
7秒前
想个网名真困难完成签到,获得积分10
8秒前
只A不B应助D1fficulty采纳,获得30
8秒前
9秒前
9秒前
10秒前
万有引力CZ完成签到,获得积分20
10秒前
10秒前
12秒前
12秒前
14秒前
笨笨发布了新的文献求助10
15秒前
15秒前
16秒前
cc发布了新的文献求助10
16秒前
壮观鞋垫发布了新的文献求助10
17秒前
CipherSage应助callmecjh采纳,获得10
17秒前
情怀应助Russell采纳,获得10
17秒前
zmx发布了新的文献求助10
18秒前
于晨欣发布了新的文献求助10
19秒前
20秒前
查资料完成签到 ,获得积分10
20秒前
大模型应助2025采纳,获得10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971516
求助须知:如何正确求助?哪些是违规求助? 3516229
关于积分的说明 11181488
捐赠科研通 3251405
什么是DOI,文献DOI怎么找? 1795821
邀请新用户注册赠送积分活动 876051
科研通“疑难数据库(出版商)”最低求助积分说明 805245