亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Building a pelvic organ prolapse diagnostic model using vision transformer on multi‐sequence MRI

可解释性 分级(工程) 卡帕 人工智能 科恩卡帕 医学 磁共振成像 计算机科学 试验装置 放射科 机器学习 数学 几何学 工程类 土木工程
作者
Shaojun Zhu,Xiaoxuan Zhu,Bo Zheng,Maonian Wu,Qiongshan Li,Cheng Qian
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17441
摘要

Abstract Background Although the uterus, bladder, and rectum are distinct organs, their muscular fasciae are often interconnected. Clinical experience suggests that they may share common risk factors and associations. When one organ experiences prolapse, it can potentially affect the neighboring organs. However, the current assessment of disease severity still relies on manual measurements, which can yield varying results depending on the physician, thereby leading to diagnostic inaccuracies. Purpose This study aims to develop a multilabel grading model based on deep learning to classify the degree of prolapse of three organs in the female pelvis using stress magnetic resonance imaging (MRI) and provide interpretable result analysis. Methods We utilized sagittal MRI sequences taken at rest and during maximum Valsalva maneuver from 662 subjects. The training set included 464 subjects, the validation set included 98 subjects, and the test set included 100 subjects (training set n = 464, validation set n = 98, test set n = 100). We designed a feature extraction module specifically for pelvic floor MRI using the vision transformer architecture and employed label masking training strategy and pre‐training methods to enhance model convergence. The grading results were evaluated using Precision, Kappa, Recall, and Area Under the Curve (AUC). To validate the effectiveness of the model, the designed model was compared with classic grading methods. Finally, we provided interpretability charts illustrating the model's operational principles on the grading task. Results In terms of POP grading detection, the model achieved an average Precision, Kappa coefficient, Recall, and AUC of 0.86, 0.77, 0.76, and 0.86, respectively. Compared to existing studies, our model achieved the highest performance metrics. The average time taken to diagnose a patient was 0.38 s. Conclusions The proposed model achieved detection accuracy that is comparable to or even exceeds that of physicians, demonstrating the effectiveness of the vision transformer architecture and label masking training strategy for assisting in the grading of POP under static and maximum Valsalva conditions. This offers a promising option for computer‐aided diagnosis and treatment planning of POP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
满意的伊完成签到,获得积分10
19秒前
28秒前
55秒前
55秒前
Alimove发布了新的文献求助10
58秒前
大模型应助Alimove采纳,获得30
1分钟前
FashionBoy应助ZBQ采纳,获得10
1分钟前
浮游应助zing采纳,获得10
1分钟前
情怀应助爱妍采纳,获得10
1分钟前
1分钟前
ZBQ发布了新的文献求助10
1分钟前
1分钟前
1分钟前
爱妍发布了新的文献求助10
1分钟前
1分钟前
2分钟前
爱妍完成签到,获得积分20
2分钟前
彭于晏应助study采纳,获得10
2分钟前
2分钟前
study完成签到,获得积分10
2分钟前
2分钟前
可爱的函函应助study采纳,获得10
2分钟前
2分钟前
study发布了新的文献求助10
2分钟前
2分钟前
study发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
hehe完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
Huzhu应助科研通管家采纳,获得10
3分钟前
田様应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
balko完成签到,获得积分10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488561
求助须知:如何正确求助?哪些是违规求助? 4587391
关于积分的说明 14413838
捐赠科研通 4518759
什么是DOI,文献DOI怎么找? 2476074
邀请新用户注册赠送积分活动 1461541
关于科研通互助平台的介绍 1434505