Building a pelvic organ prolapse diagnostic model using vision transformer on multi‐sequence MRI

可解释性 分级(工程) 卡帕 人工智能 科恩卡帕 医学 磁共振成像 计算机科学 试验装置 放射科 机器学习 数学 土木工程 几何学 工程类
作者
Shaojun Zhu,Xiaoxuan Zhu,Bo Zheng,Maonian Wu,Qiongshan Li,Cheng Qian
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17441
摘要

Abstract Background Although the uterus, bladder, and rectum are distinct organs, their muscular fasciae are often interconnected. Clinical experience suggests that they may share common risk factors and associations. When one organ experiences prolapse, it can potentially affect the neighboring organs. However, the current assessment of disease severity still relies on manual measurements, which can yield varying results depending on the physician, thereby leading to diagnostic inaccuracies. Purpose This study aims to develop a multilabel grading model based on deep learning to classify the degree of prolapse of three organs in the female pelvis using stress magnetic resonance imaging (MRI) and provide interpretable result analysis. Methods We utilized sagittal MRI sequences taken at rest and during maximum Valsalva maneuver from 662 subjects. The training set included 464 subjects, the validation set included 98 subjects, and the test set included 100 subjects (training set n = 464, validation set n = 98, test set n = 100). We designed a feature extraction module specifically for pelvic floor MRI using the vision transformer architecture and employed label masking training strategy and pre‐training methods to enhance model convergence. The grading results were evaluated using Precision, Kappa, Recall, and Area Under the Curve (AUC). To validate the effectiveness of the model, the designed model was compared with classic grading methods. Finally, we provided interpretability charts illustrating the model's operational principles on the grading task. Results In terms of POP grading detection, the model achieved an average Precision, Kappa coefficient, Recall, and AUC of 0.86, 0.77, 0.76, and 0.86, respectively. Compared to existing studies, our model achieved the highest performance metrics. The average time taken to diagnose a patient was 0.38 s. Conclusions The proposed model achieved detection accuracy that is comparable to or even exceeds that of physicians, demonstrating the effectiveness of the vision transformer architecture and label masking training strategy for assisting in the grading of POP under static and maximum Valsalva conditions. This offers a promising option for computer‐aided diagnosis and treatment planning of POP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yyy718发布了新的文献求助10
刚刚
王琳琳完成签到 ,获得积分10
刚刚
weijian完成签到,获得积分10
刚刚
好运张发布了新的文献求助10
1秒前
wangjue完成签到,获得积分10
1秒前
2024完成签到,获得积分10
1秒前
2秒前
2秒前
美好的黛丝完成签到,获得积分10
2秒前
4秒前
弦和发布了新的文献求助10
5秒前
天风完成签到,获得积分10
5秒前
深情安青应助呱呱太采纳,获得10
5秒前
我很懵逼完成签到,获得积分10
6秒前
天天快乐应助Humble77采纳,获得10
6秒前
6秒前
ll发布了新的文献求助10
7秒前
gdh发布了新的文献求助10
7秒前
LEO发布了新的文献求助10
7秒前
苦砂糖完成签到,获得积分10
7秒前
余旮旮完成签到,获得积分10
8秒前
linalian完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
科研通AI2S应助ll采纳,获得10
11秒前
11秒前
12秒前
善学以致用应助lxz采纳,获得10
12秒前
火柴two完成签到,获得积分10
13秒前
Zhong发布了新的文献求助20
14秒前
郭志强发布了新的文献求助10
14秒前
大栗子发布了新的文献求助10
15秒前
大吴克发布了新的文献求助10
16秒前
狂野的寻凝完成签到,获得积分10
16秒前
17秒前
Owen应助科研通管家采纳,获得10
17秒前
深情安青应助科研通管家采纳,获得10
17秒前
乐乐应助科研通管家采纳,获得10
17秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328181
求助须知:如何正确求助?哪些是违规求助? 2958278
关于积分的说明 8589965
捐赠科研通 2636636
什么是DOI,文献DOI怎么找? 1443053
科研通“疑难数据库(出版商)”最低求助积分说明 668500
邀请新用户注册赠送积分活动 655733