Semi Supervised Change Detection Method of Remote Sensing Image

计算机科学 鉴别器 判别式 变更检测 人工智能 深度学习 残余物 发电机(电路理论) 特征(语言学) 模式识别(心理学) 图像(数学) 机器学习 功率(物理) 算法 探测器 电信 语言学 物理 哲学 量子力学
作者
Wei Nie,Peng Gou,Yang Liu,Bhaskar Shrestha,Tianyu Zhou,Nuo Xu,Peng Wang,QiQi Du
标识
DOI:10.1109/iaeac54830.2022.9930050
摘要

Change detection based on deep learning is an important research direction in intelligent interpretation of remote sensing images. It has developed rapidly in recent years, but it is also a long-term challenge in remote sensing applications. This is mainly because the production of labeled data for training requires a lot of labor costs, and the currently available change detection labeled data is relatively small. While the complexity of high-resolution remote sensing imagery greatly increases the difficulty for deep learning models to learn robust and discriminative representations from scenes and objects, in this case, training deep learning models with a small amount of labeled data is still a huge challenge. To address this issue, this paper proposes a semi-supervised learning change detection method based on Generative Adversarial Networks (GAN). Compared with previous techniques, this paper combines a typical GAN framework with a Siamese network and applies it to change detection in remote sensing images. We introduce residual networks and atrous convolutions into Siamese networks, and employ a flow alignment module (FAM) to learn semantic flow between adjacent hierarchical feature maps. The connected discriminator formulates the training of the generator as a min-max optimization problem. Comprehensive quantitative and qualitative evaluations of multiple models show that our proposed method outperforms state-of-the-art change detection algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知秋发布了新的文献求助10
刚刚
刚刚
1秒前
林新宇发布了新的文献求助10
2秒前
2秒前
aaaaaawwwww发布了新的文献求助10
3秒前
ZeKaWa应助BBB采纳,获得10
3秒前
科研通AI6应助CBWKEYANTONG123采纳,获得10
3秒前
3秒前
4秒前
充电宝应助善良高山采纳,获得10
4秒前
研友_Y59685完成签到,获得积分10
5秒前
5秒前
5秒前
谢大喵应助天青111采纳,获得30
5秒前
852应助JHJ采纳,获得10
5秒前
梅莉达完成签到,获得积分10
5秒前
lx完成签到,获得积分10
6秒前
6秒前
舒适香露发布了新的文献求助10
6秒前
Samuel发布了新的文献求助10
6秒前
无辜易绿完成签到 ,获得积分10
6秒前
zzn发布了新的文献求助10
6秒前
陈晶发布了新的文献求助10
7秒前
huahua123456_发布了新的文献求助30
7秒前
YuanLi完成签到,获得积分10
7秒前
寻道图强举报白白白求助涉嫌违规
7秒前
莫愁一舞完成签到,获得积分10
7秒前
迷yo发布了新的文献求助10
7秒前
研友_VZG7GZ应助若晨采纳,获得20
8秒前
无极微光应助sssshhh采纳,获得20
8秒前
songshu完成签到,获得积分10
8秒前
DE应助害羞的天真采纳,获得10
8秒前
9秒前
爱听歌帆布鞋完成签到,获得积分10
9秒前
9秒前
10秒前
zerr36完成签到,获得积分10
10秒前
mmf发布了新的文献求助10
11秒前
NexusExplorer应助权_888采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546309
求助须知:如何正确求助?哪些是违规求助? 4632193
关于积分的说明 14625447
捐赠科研通 4573861
什么是DOI,文献DOI怎么找? 2507851
邀请新用户注册赠送积分活动 1484503
关于科研通互助平台的介绍 1455714