A federated feature selection algorithm based on particle swarm optimization under privacy protection

特征选择 计算机科学 特征(语言学) 粒子群优化 数据预处理 数据挖掘 机器学习 选择(遗传算法) 人工智能 预处理器 过程(计算) 信息隐私 计算机安全 语言学 操作系统 哲学
作者
Ying Hu,Yong Zhang,Xiao‐Zhi Gao,Dunwei Gong,Xianfang Song,Yinan Guo,Jun Wang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:260: 110122-110122 被引量:45
标识
DOI:10.1016/j.knosys.2022.110122
摘要

Feature selection is an important preprocessing technique in the fields of data mining and machine learning. With the promotion of privacy protection awareness, recently it becomes a very practical and challenging issue to select high-quality feature subsets while ensuring the privacy of all participants. However, there is a lack of research results on this issue, i.e., feature selection under privacy protection. Aiming at the issue, this paper proposes a federated feature selection framework for the first time. In the framework, inspiring by the idea of federated learning, a credible third participant is introduced to process and integrate optimal feature subsets from multiple participants. On the basis of the framework, a federated evolutionary feature selection algorithm based on particle swarm optimization is proposed to effectively solve feature selection problems with multiple participants under privacy protection. Two new operators satisfying the requirement of privacy protection, i.e., the feature assembling strategy with multi-participant cooperation and the swarm initialization strategy guided by assembling solution, are designed to improve the ability of the proposed algorithm. Compared with several typical assembling feature selection algorithms on 15 data sets, experimental results show that the proposed algorithm can significantly improve the classification accuracy of the feature subset selected by each participant, while protecting the privacy of data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄晓荷发布了新的文献求助10
刚刚
姜月半完成签到 ,获得积分10
刚刚
爱科研的骅完成签到,获得积分10
1秒前
1秒前
xu_teng完成签到,获得积分10
2秒前
2秒前
酷波er应助wnll采纳,获得10
2秒前
3秒前
魔力巴啦啦完成签到 ,获得积分10
3秒前
你好完成签到,获得积分10
3秒前
ztttttt完成签到,获得积分20
3秒前
4秒前
lucky完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
Shrine完成签到,获得积分10
5秒前
麦丰完成签到,获得积分10
5秒前
lswl发布了新的文献求助10
5秒前
英姑应助Bo采纳,获得10
6秒前
小伟跑位发布了新的文献求助10
6秒前
火星上初翠完成签到,获得积分10
7秒前
深情安青应助xu_teng采纳,获得20
7秒前
ZhangBOY完成签到 ,获得积分10
8秒前
Amber发布了新的文献求助10
8秒前
思源应助qiuqiu采纳,获得10
8秒前
暴躁的嘉懿完成签到,获得积分10
8秒前
9秒前
9秒前
无奈翠风完成签到,获得积分20
10秒前
卡卡西应助木木采纳,获得20
10秒前
紫紫完成签到,获得积分10
10秒前
rengar完成签到,获得积分10
11秒前
共享精神应助XING采纳,获得10
11秒前
拓跋慕灵完成签到,获得积分10
11秒前
阳光飞风关注了科研通微信公众号
11秒前
ztttttt发布了新的文献求助10
12秒前
纯真的笑珊完成签到,获得积分10
13秒前
13秒前
13秒前
黄晓荷完成签到,获得积分10
13秒前
vali完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954728
求助须知:如何正确求助?哪些是违规求助? 3500844
关于积分的说明 11101288
捐赠科研通 3231320
什么是DOI,文献DOI怎么找? 1786401
邀请新用户注册赠送积分活动 870028
科研通“疑难数据库(出版商)”最低求助积分说明 801771