A federated feature selection algorithm based on particle swarm optimization under privacy protection

特征选择 计算机科学 特征(语言学) 粒子群优化 数据预处理 数据挖掘 机器学习 选择(遗传算法) 人工智能 预处理器 过程(计算) 信息隐私 计算机安全 语言学 操作系统 哲学
作者
Ying Hu,Yong Zhang,Xiao‐Zhi Gao,Dunwei Gong,Xianfang Song,Yinan Guo,Jun Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:260: 110122-110122 被引量:45
标识
DOI:10.1016/j.knosys.2022.110122
摘要

Feature selection is an important preprocessing technique in the fields of data mining and machine learning. With the promotion of privacy protection awareness, recently it becomes a very practical and challenging issue to select high-quality feature subsets while ensuring the privacy of all participants. However, there is a lack of research results on this issue, i.e., feature selection under privacy protection. Aiming at the issue, this paper proposes a federated feature selection framework for the first time. In the framework, inspiring by the idea of federated learning, a credible third participant is introduced to process and integrate optimal feature subsets from multiple participants. On the basis of the framework, a federated evolutionary feature selection algorithm based on particle swarm optimization is proposed to effectively solve feature selection problems with multiple participants under privacy protection. Two new operators satisfying the requirement of privacy protection, i.e., the feature assembling strategy with multi-participant cooperation and the swarm initialization strategy guided by assembling solution, are designed to improve the ability of the proposed algorithm. Compared with several typical assembling feature selection algorithms on 15 data sets, experimental results show that the proposed algorithm can significantly improve the classification accuracy of the feature subset selected by each participant, while protecting the privacy of data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助30
刚刚
tt发布了新的文献求助10
刚刚
赘婿应助Youlu采纳,获得10
刚刚
LMY发布了新的文献求助10
2秒前
优美紫槐发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
4秒前
5秒前
5秒前
周航发布了新的文献求助10
5秒前
5秒前
英姑应助芒果绵绵冰采纳,获得10
6秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
Xhan完成签到,获得积分10
7秒前
开放冰香发布了新的文献求助10
7秒前
7秒前
右右发布了新的文献求助10
8秒前
taotao216发布了新的文献求助10
8秒前
9秒前
9秒前
优美紫槐发布了新的文献求助10
9秒前
9秒前
9秒前
李小胖完成签到,获得积分10
9秒前
Dogtor发布了新的文献求助10
10秒前
Lucas应助吃瓜采纳,获得10
11秒前
香蕉觅云应助tt采纳,获得10
11秒前
长情藏今发布了新的文献求助10
13秒前
Criminology34应助Xhan采纳,获得10
13秒前
wzh发布了新的文献求助10
14秒前
bkagyin应助寒樱怒放采纳,获得10
14秒前
苹果不平发布了新的文献求助10
15秒前
小白完成签到,获得积分10
15秒前
科研通AI6应助caigou采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720401
求助须知:如何正确求助?哪些是违规求助? 5260360
关于积分的说明 15291295
捐赠科研通 4869876
什么是DOI,文献DOI怎么找? 2615073
邀请新用户注册赠送积分活动 1565066
关于科研通互助平台的介绍 1522172