A federated feature selection algorithm based on particle swarm optimization under privacy protection

特征选择 计算机科学 特征(语言学) 粒子群优化 数据预处理 数据挖掘 机器学习 选择(遗传算法) 人工智能 预处理器 过程(计算) 信息隐私 计算机安全 哲学 语言学 操作系统
作者
Ying Hu,Yong Zhang,Xiao‐Zhi Gao,Dunwei Gong,Xianfang Song,Yinan Guo,Jun Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:260: 110122-110122 被引量:45
标识
DOI:10.1016/j.knosys.2022.110122
摘要

Feature selection is an important preprocessing technique in the fields of data mining and machine learning. With the promotion of privacy protection awareness, recently it becomes a very practical and challenging issue to select high-quality feature subsets while ensuring the privacy of all participants. However, there is a lack of research results on this issue, i.e., feature selection under privacy protection. Aiming at the issue, this paper proposes a federated feature selection framework for the first time. In the framework, inspiring by the idea of federated learning, a credible third participant is introduced to process and integrate optimal feature subsets from multiple participants. On the basis of the framework, a federated evolutionary feature selection algorithm based on particle swarm optimization is proposed to effectively solve feature selection problems with multiple participants under privacy protection. Two new operators satisfying the requirement of privacy protection, i.e., the feature assembling strategy with multi-participant cooperation and the swarm initialization strategy guided by assembling solution, are designed to improve the ability of the proposed algorithm. Compared with several typical assembling feature selection algorithms on 15 data sets, experimental results show that the proposed algorithm can significantly improve the classification accuracy of the feature subset selected by each participant, while protecting the privacy of data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研r完成签到,获得积分10
刚刚
刚刚
Ava应助yh采纳,获得10
1秒前
Nikii发布了新的文献求助10
1秒前
whatever应助guozi采纳,获得20
1秒前
到江南散步完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
Hello应助澳澳采纳,获得10
3秒前
4秒前
king发布了新的文献求助20
4秒前
汉堡包应助小蜗采纳,获得10
4秒前
5秒前
5秒前
李琦完成签到 ,获得积分10
6秒前
yuta123发布了新的文献求助10
7秒前
7秒前
junyang发布了新的文献求助10
7秒前
顾矜应助尼康哥采纳,获得10
8秒前
Hello应助朴素的士晋采纳,获得10
8秒前
8秒前
娇气的芷巧完成签到 ,获得积分10
8秒前
彩色如之发布了新的文献求助10
9秒前
Jolin发布了新的文献求助10
9秒前
希望天下0贩的0应助vvA11采纳,获得10
9秒前
苏小狸完成签到,获得积分10
9秒前
10秒前
科研通AI2S应助魔音甜菜采纳,获得10
11秒前
WWX完成签到,获得积分10
12秒前
乐观帅哥完成签到,获得积分10
12秒前
12秒前
hsa_ID完成签到,获得积分20
12秒前
封尘逸动完成签到,获得积分10
12秒前
wrhh完成签到,获得积分10
13秒前
星晴遇见花海完成签到,获得积分10
13秒前
vvA11完成签到,获得积分10
13秒前
沐允贤完成签到,获得积分10
13秒前
zzzzlll发布了新的文献求助10
13秒前
染墨绘梨衣完成签到,获得积分10
13秒前
13秒前
nggs发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624445
求助须知:如何正确求助?哪些是违规求助? 4710318
关于积分的说明 14950073
捐赠科研通 4778363
什么是DOI,文献DOI怎么找? 2553244
邀请新用户注册赠送积分活动 1515179
关于科研通互助平台的介绍 1475520