A federated feature selection algorithm based on particle swarm optimization under privacy protection

特征选择 计算机科学 特征(语言学) 粒子群优化 数据预处理 数据挖掘 机器学习 选择(遗传算法) 人工智能 预处理器 过程(计算) 信息隐私 计算机安全 哲学 语言学 操作系统
作者
Ying Hu,Yong Zhang,Xiao‐Zhi Gao,Dunwei Gong,Xianfang Song,Yinan Guo,Jun Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:260: 110122-110122 被引量:45
标识
DOI:10.1016/j.knosys.2022.110122
摘要

Feature selection is an important preprocessing technique in the fields of data mining and machine learning. With the promotion of privacy protection awareness, recently it becomes a very practical and challenging issue to select high-quality feature subsets while ensuring the privacy of all participants. However, there is a lack of research results on this issue, i.e., feature selection under privacy protection. Aiming at the issue, this paper proposes a federated feature selection framework for the first time. In the framework, inspiring by the idea of federated learning, a credible third participant is introduced to process and integrate optimal feature subsets from multiple participants. On the basis of the framework, a federated evolutionary feature selection algorithm based on particle swarm optimization is proposed to effectively solve feature selection problems with multiple participants under privacy protection. Two new operators satisfying the requirement of privacy protection, i.e., the feature assembling strategy with multi-participant cooperation and the swarm initialization strategy guided by assembling solution, are designed to improve the ability of the proposed algorithm. Compared with several typical assembling feature selection algorithms on 15 data sets, experimental results show that the proposed algorithm can significantly improve the classification accuracy of the feature subset selected by each participant, while protecting the privacy of data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
balko完成签到,获得积分10
2秒前
111完成签到,获得积分20
2秒前
寄居安发布了新的文献求助10
2秒前
6秒前
小二郎应助二二零一采纳,获得30
10秒前
aaaa发布了新的文献求助10
10秒前
满意竺完成签到,获得积分20
10秒前
顾矜应助manan采纳,获得10
10秒前
李健应助温柔的蛋挞采纳,获得10
12秒前
so000应助DrWho采纳,获得10
12秒前
13秒前
皮凡完成签到,获得积分10
13秒前
15秒前
15秒前
阿巴阿巴发布了新的文献求助10
16秒前
17秒前
ZZ完成签到 ,获得积分10
17秒前
18秒前
CodeCraft应助可乐采纳,获得10
18秒前
丘比特应助哈贝喵采纳,获得30
19秒前
yaya驳回了JamesPei应助
20秒前
CipherSage应助OHDJSZMS采纳,获得10
20秒前
x421发布了新的文献求助10
21秒前
aaaa完成签到,获得积分10
22秒前
彭于晏应助小肥采纳,获得10
22秒前
十一玮应助风行采纳,获得10
23秒前
26秒前
烟花应助小喻采纳,获得10
26秒前
rid4iuclous2完成签到,获得积分10
26秒前
27秒前
wanci应助研友_8Yo0Xn采纳,获得10
27秒前
DrWho完成签到,获得积分10
27秒前
29秒前
29秒前
着急的盼山完成签到,获得积分10
30秒前
科研通AI2S应助DrWho采纳,获得10
30秒前
若溪发布了新的文献求助10
31秒前
乔乔乔完成签到,获得积分10
31秒前
Zack发布了新的文献求助10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459295
求助须知:如何正确求助?哪些是违规求助? 3053785
关于积分的说明 9038498
捐赠科研通 2743130
什么是DOI,文献DOI怎么找? 1504671
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694664