A federated feature selection algorithm based on particle swarm optimization under privacy protection

特征选择 计算机科学 特征(语言学) 粒子群优化 数据预处理 数据挖掘 机器学习 选择(遗传算法) 人工智能 预处理器 过程(计算) 信息隐私 计算机安全 哲学 语言学 操作系统
作者
Ying Hu,Yong Zhang,Xiao‐Zhi Gao,Dunwei Gong,Xianfang Song,Yinan Guo,Jun Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:260: 110122-110122 被引量:45
标识
DOI:10.1016/j.knosys.2022.110122
摘要

Feature selection is an important preprocessing technique in the fields of data mining and machine learning. With the promotion of privacy protection awareness, recently it becomes a very practical and challenging issue to select high-quality feature subsets while ensuring the privacy of all participants. However, there is a lack of research results on this issue, i.e., feature selection under privacy protection. Aiming at the issue, this paper proposes a federated feature selection framework for the first time. In the framework, inspiring by the idea of federated learning, a credible third participant is introduced to process and integrate optimal feature subsets from multiple participants. On the basis of the framework, a federated evolutionary feature selection algorithm based on particle swarm optimization is proposed to effectively solve feature selection problems with multiple participants under privacy protection. Two new operators satisfying the requirement of privacy protection, i.e., the feature assembling strategy with multi-participant cooperation and the swarm initialization strategy guided by assembling solution, are designed to improve the ability of the proposed algorithm. Compared with several typical assembling feature selection algorithms on 15 data sets, experimental results show that the proposed algorithm can significantly improve the classification accuracy of the feature subset selected by each participant, while protecting the privacy of data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Xxjj完成签到,获得积分10
1秒前
1秒前
李禾和完成签到,获得积分10
1秒前
取个名儿吧完成签到,获得积分10
1秒前
骆驼顶顶完成签到,获得积分10
1秒前
轻舞飞扬发布了新的文献求助10
2秒前
2秒前
拼搏的笑发布了新的文献求助10
2秒前
2秒前
lulu发布了新的文献求助10
2秒前
2秒前
恩典发布了新的文献求助10
3秒前
Cecilia完成签到,获得积分10
4秒前
壮壮发布了新的文献求助10
4秒前
Owen应助默默戎采纳,获得10
4秒前
4秒前
学术小菜鸟完成签到,获得积分10
4秒前
韩谷子完成签到 ,获得积分10
4秒前
5秒前
Re0pen发布了新的文献求助10
5秒前
王梓磬完成签到,获得积分10
6秒前
6秒前
852应助Mona采纳,获得10
6秒前
6秒前
wanci应助刘能采纳,获得10
6秒前
7秒前
科研通AI6应助kyfg采纳,获得10
7秒前
shanshan__完成签到,获得积分10
7秒前
生动的沧海完成签到,获得积分10
7秒前
田様应助coups哒嘟采纳,获得10
7秒前
小二郎应助Mody采纳,获得10
7秒前
8秒前
8秒前
酷波er应助漂亮的千万采纳,获得10
8秒前
wjy完成签到 ,获得积分10
8秒前
9秒前
coooos发布了新的文献求助20
9秒前
星野完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477701
求助须知:如何正确求助?哪些是违规求助? 4579485
关于积分的说明 14369133
捐赠科研通 4507697
什么是DOI,文献DOI怎么找? 2470120
邀请新用户注册赠送积分活动 1457068
关于科研通互助平台的介绍 1431055