已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Series arc fault diagnosis method of photovoltaic arrays based on GASF and improved DCGAN

一般化 断层(地质) 卷积神经网络 计算机科学 样品(材料) 卷积(计算机科学) 人工智能 模式识别(心理学) 瞬态(计算机编程) 算法 系列(地层学) 人工神经网络 数学 数学分析 化学 色谱法 地震学 地质学 操作系统 古生物学 生物
作者
Wei Gao,Hui Jin,Gengjie Yang
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:54: 101809-101809 被引量:17
标识
DOI:10.1016/j.aei.2022.101809
摘要

In recent years, the methods of machine learning are widely investigated to resolve the series arc fault (SAF) diagnosis problem in photovoltaic (PV) arrays. However, owing to the factors such as weak signal characteristics, long algorithm execution time, and sample imbalance in practical applications, these methods may have difficulties of detecting the SAF. To address these problems, a method based on the Gramian angular summation field (GASF) combined with the squeeze and excitation-deep convolution generative adversarial network (SE-DCGAN) is proposed. Firstly, the absolute difference of margin factor (ADMF) of the current signal is calculated to accurately extract the transient current data when the SAF occurs. Thereafter, the GASF is used to convert transient current data into two-dimensional images to amplify the universal characteristics of the SAF. Subsequently, the SE-DCGAN is adopted to augment the GASF images of the SAF to solve the problem of limited SAF samples. Finally, a convolutional neural network (CNN) is trained to identify the SAF. Also, a fusion sample training method is proposed in this research, that is, normal samples of different PV systems are added to the training set to enhance the generalization ability of CNN. The advantages of the proposed method are that the identification of SAF is improved by converting one-dimensional signals into two-dimensional images, and the generalization ability of the detection model is improved by exploiting the common features of SAFs and fusion training. The validity and generalization ability of the proposed method are verified by three datasets under different PV systems. Experimental results reveal that the proposed method can achieve high recognition accuracy for the measured data; moreover, no misjudgments occurred in identifying the interference events such as maximum power point tracking (MPPT) adjustment and irradiance mutation (IM). In addition, the experiments confirm that the fusion training method enables the model more universal and applicable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风趣从露发布了新的文献求助10
1秒前
4秒前
面条完成签到,获得积分10
7秒前
7秒前
9秒前
9秒前
SXM发布了新的文献求助10
10秒前
彭于晏应助斯文的慕蕊采纳,获得10
10秒前
whereas完成签到 ,获得积分10
11秒前
13秒前
14秒前
15秒前
17秒前
南柯一梦完成签到 ,获得积分10
18秒前
甲乙驾驭发布了新的文献求助10
19秒前
赘婿应助虞方超采纳,获得10
22秒前
Chem34发布了新的文献求助10
22秒前
lpz完成签到 ,获得积分10
23秒前
Pen_nie完成签到,获得积分10
24秒前
adearfish完成签到 ,获得积分10
24秒前
小妮基操勿六完成签到,获得积分10
24秒前
25秒前
镜子应助不安的凡桃采纳,获得30
25秒前
甲乙驾驭完成签到,获得积分20
26秒前
搜集达人应助加菲丰丰采纳,获得10
28秒前
快乐的迷勒完成签到,获得积分10
31秒前
希望天下0贩的0应助Timon采纳,获得10
32秒前
37秒前
37秒前
39秒前
ZHOU完成签到,获得积分10
39秒前
魁梧的太清完成签到 ,获得积分10
40秒前
小灰灰完成签到 ,获得积分10
42秒前
四夕完成签到 ,获得积分10
43秒前
竹羽发布了新的文献求助20
43秒前
43秒前
hala发布了新的文献求助10
44秒前
45秒前
45秒前
月yue完成签到,获得积分10
46秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3084988
求助须知:如何正确求助?哪些是违规求助? 2738035
关于积分的说明 7547906
捐赠科研通 2387624
什么是DOI,文献DOI怎么找? 1266055
科研通“疑难数据库(出版商)”最低求助积分说明 613267
版权声明 598450