Series arc fault diagnosis method of photovoltaic arrays based on GASF and improved DCGAN

一般化 断层(地质) 卷积神经网络 计算机科学 样品(材料) 卷积(计算机科学) 人工智能 模式识别(心理学) 瞬态(计算机编程) 算法 系列(地层学) 人工神经网络 数学 古生物学 数学分析 地震学 地质学 操作系统 化学 生物 色谱法
作者
Wei Gao,Hui Jin,Gengjie Yang
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:54: 101809-101809 被引量:23
标识
DOI:10.1016/j.aei.2022.101809
摘要

In recent years, the methods of machine learning are widely investigated to resolve the series arc fault (SAF) diagnosis problem in photovoltaic (PV) arrays. However, owing to the factors such as weak signal characteristics, long algorithm execution time, and sample imbalance in practical applications, these methods may have difficulties of detecting the SAF. To address these problems, a method based on the Gramian angular summation field (GASF) combined with the squeeze and excitation-deep convolution generative adversarial network (SE-DCGAN) is proposed. Firstly, the absolute difference of margin factor (ADMF) of the current signal is calculated to accurately extract the transient current data when the SAF occurs. Thereafter, the GASF is used to convert transient current data into two-dimensional images to amplify the universal characteristics of the SAF. Subsequently, the SE-DCGAN is adopted to augment the GASF images of the SAF to solve the problem of limited SAF samples. Finally, a convolutional neural network (CNN) is trained to identify the SAF. Also, a fusion sample training method is proposed in this research, that is, normal samples of different PV systems are added to the training set to enhance the generalization ability of CNN. The advantages of the proposed method are that the identification of SAF is improved by converting one-dimensional signals into two-dimensional images, and the generalization ability of the detection model is improved by exploiting the common features of SAFs and fusion training. The validity and generalization ability of the proposed method are verified by three datasets under different PV systems. Experimental results reveal that the proposed method can achieve high recognition accuracy for the measured data; moreover, no misjudgments occurred in identifying the interference events such as maximum power point tracking (MPPT) adjustment and irradiance mutation (IM). In addition, the experiments confirm that the fusion training method enables the model more universal and applicable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈jiajia发布了新的文献求助10
刚刚
null应助andy采纳,获得10
刚刚
刚刚
liang完成签到,获得积分10
刚刚
丘比特应助傅剑寒采纳,获得10
刚刚
1秒前
shine发布了新的文献求助10
1秒前
Hong发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
尹雪儿完成签到,获得积分10
1秒前
2秒前
陈可可完成签到,获得积分10
2秒前
岁岁平安关注了科研通微信公众号
2秒前
干净寻冬应助Liens采纳,获得10
3秒前
上官若男应助Twonej采纳,获得300
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
三石完成签到,获得积分10
4秒前
BeBrave1028完成签到,获得积分10
4秒前
随缘发布了新的文献求助10
4秒前
PARA关注了科研通微信公众号
4秒前
4秒前
bingo发布了新的文献求助10
4秒前
5秒前
Shoujiang发布了新的文献求助10
5秒前
6秒前
GM发布了新的文献求助10
6秒前
6秒前
liang发布了新的文献求助10
6秒前
6秒前
充电宝应助pikopiko采纳,获得30
6秒前
斯文败类应助Hong采纳,获得10
6秒前
Ting222完成签到,获得积分10
7秒前
无花果应助十年小橘采纳,获得10
7秒前
yanziwu94发布了新的文献求助10
8秒前
9秒前
善学以致用应助李春阳采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624710
求助须知:如何正确求助?哪些是违规求助? 4710500
关于积分的说明 14951127
捐赠科研通 4778615
什么是DOI,文献DOI怎么找? 2553367
邀请新用户注册赠送积分活动 1515328
关于科研通互助平台的介绍 1475603