Series arc fault diagnosis method of photovoltaic arrays based on GASF and improved DCGAN

一般化 断层(地质) 卷积神经网络 计算机科学 样品(材料) 卷积(计算机科学) 人工智能 模式识别(心理学) 瞬态(计算机编程) 算法 系列(地层学) 人工神经网络 数学 古生物学 数学分析 地震学 地质学 操作系统 化学 生物 色谱法
作者
Wei Gao,Hui Jin,Gengjie Yang
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:54: 101809-101809 被引量:18
标识
DOI:10.1016/j.aei.2022.101809
摘要

In recent years, the methods of machine learning are widely investigated to resolve the series arc fault (SAF) diagnosis problem in photovoltaic (PV) arrays. However, owing to the factors such as weak signal characteristics, long algorithm execution time, and sample imbalance in practical applications, these methods may have difficulties of detecting the SAF. To address these problems, a method based on the Gramian angular summation field (GASF) combined with the squeeze and excitation-deep convolution generative adversarial network (SE-DCGAN) is proposed. Firstly, the absolute difference of margin factor (ADMF) of the current signal is calculated to accurately extract the transient current data when the SAF occurs. Thereafter, the GASF is used to convert transient current data into two-dimensional images to amplify the universal characteristics of the SAF. Subsequently, the SE-DCGAN is adopted to augment the GASF images of the SAF to solve the problem of limited SAF samples. Finally, a convolutional neural network (CNN) is trained to identify the SAF. Also, a fusion sample training method is proposed in this research, that is, normal samples of different PV systems are added to the training set to enhance the generalization ability of CNN. The advantages of the proposed method are that the identification of SAF is improved by converting one-dimensional signals into two-dimensional images, and the generalization ability of the detection model is improved by exploiting the common features of SAFs and fusion training. The validity and generalization ability of the proposed method are verified by three datasets under different PV systems. Experimental results reveal that the proposed method can achieve high recognition accuracy for the measured data; moreover, no misjudgments occurred in identifying the interference events such as maximum power point tracking (MPPT) adjustment and irradiance mutation (IM). In addition, the experiments confirm that the fusion training method enables the model more universal and applicable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
庄怀逸完成签到 ,获得积分10
1秒前
单薄的大白菜真实的钥匙完成签到,获得积分10
2秒前
八荒来犬发布了新的文献求助10
2秒前
无私雪碧发布了新的文献求助10
3秒前
呆萌黑猫完成签到,获得积分10
3秒前
4秒前
4秒前
归尘发布了新的文献求助20
4秒前
李泽完成签到,获得积分10
5秒前
冷艳的白莲完成签到,获得积分10
5秒前
风信子完成签到,获得积分10
5秒前
斯文败类应助啊啊啊啊采纳,获得10
5秒前
amberzyc应助阿巴阿巴采纳,获得10
6秒前
ChengYonghui完成签到,获得积分10
7秒前
飞雪完成签到,获得积分10
7秒前
8秒前
8秒前
liutg24完成签到,获得积分10
8秒前
dd发布了新的文献求助10
8秒前
精明尔曼完成签到,获得积分10
8秒前
9秒前
yirenli完成签到,获得积分10
9秒前
9秒前
hesongwen完成签到,获得积分10
10秒前
刘英丽发布了新的文献求助10
10秒前
逐暮完成签到,获得积分20
10秒前
10秒前
文献互助1完成签到,获得积分10
10秒前
Jasper应助廉不可采纳,获得10
11秒前
思源应助chrysan采纳,获得10
11秒前
领导范儿应助肖文泽采纳,获得10
11秒前
11秒前
256发布了新的文献求助10
11秒前
万能图书馆应助Amorfati采纳,获得10
12秒前
DT完成签到,获得积分10
12秒前
大肥子发布了新的文献求助10
12秒前
CodeCraft应助哈哈哈采纳,获得10
13秒前
煎饼果子完成签到,获得积分10
13秒前
八荒来犬完成签到,获得积分20
13秒前
nowss完成签到,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015970
求助须知:如何正确求助?哪些是违规求助? 3555964
关于积分的说明 11319479
捐赠科研通 3289040
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044