Rational Design of Silicon Nanodots/Carbon Anodes by Partial Oxidization Strategy with High-Performance Lithium-Ion Storage

材料科学 阳极 纳米点 锂(药物) 碳纤维 化学工程 储能 纳米技术 阴极 复合数 电极 复合材料 光电子学 医学 物理 工程类 内分泌学 量子力学 物理化学 功率(物理) 化学
作者
Shanqiang Ou,Tao Meng,Zezhong Xie,Jin Feng,Qiushi Wang,Dong Zhou,Zhongfei Liu,Kun Wang,Changgong Meng,Yexiang Tong
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (43): 48801-48811 被引量:14
标识
DOI:10.1021/acsami.2c11906
摘要

Silicon (Si) is considered a promising anode material for rechargeable lithium-ion batteries (LIBs) due to its high theoretical capacity, low working potential, and safety features. However, the practical use of Si-based anodes is hampered by their huge volume expansion during the process of lithiation/delithiation, and they have relatively low intrinsic electronic conductivity, therefore seriously restricting their application in energy storage. Here, we propose a facile approach to directly transform siliceous biomass (bamboo leaves) into a porous carbon skeleton-wrapped Si nanodot architecture through a partial oxidization strategy and magnesium thermal reaction to obtain a high Si nanodot component composite (denoted as Si/C-O). With the synergistic effect of the porous carbon skeleton structure and uniformly dispersed Si nanodots, the Si/C-O composite anode with a stable structure that can avoid pulverization and accommodate volume expansion during cycling is fabricated. As expected, the biomass-converted Si/C-O anode not only presents a high Si component (59.7 wt %) by TGA but also exhibits an excellent capacity of 1013 mAh g-1 at 0.5 A g-1 and robust cycling stability with a capacity retention of 526 mAh g-1 after 650 cycles. Moreover, the Si/C-O anode demonstrates considerable performance in practical LIBs when assembled with a commercial LiNi0.8Co0.1Mn0.1O2 cathode. This work provides an effective strategy and long-term insights into the utilization of porous Si-based materials converted by biomass to design and synthesize high-performance LIB materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Dora.Y采纳,获得10
1秒前
慕青应助Jennie采纳,获得30
3秒前
tina完成签到 ,获得积分10
3秒前
Jianjian完成签到,获得积分10
4秒前
lbl234完成签到,获得积分10
5秒前
6秒前
培a完成签到,获得积分10
6秒前
科研通AI2S应助又一岁荣枯采纳,获得10
8秒前
呆萌蜗牛完成签到,获得积分10
8秒前
hobowei发布了新的文献求助10
8秒前
英俊的铭应助万幸鹿采纳,获得10
10秒前
10秒前
斯文的寄柔完成签到,获得积分10
10秒前
Coffee完成签到 ,获得积分10
11秒前
六六发布了新的文献求助30
11秒前
13秒前
雾散完成签到,获得积分10
13秒前
14秒前
今后应助夏青荷采纳,获得10
16秒前
111完成签到 ,获得积分10
16秒前
16秒前
zzzqqq完成签到,获得积分10
19秒前
英俊的胜完成签到,获得积分10
20秒前
20秒前
阿信必发JACS完成签到,获得积分10
21秒前
tutulucky完成签到 ,获得积分10
21秒前
22秒前
22秒前
24秒前
24秒前
古月丰色完成签到 ,获得积分10
24秒前
六六完成签到,获得积分10
24秒前
火星上尔柳完成签到,获得积分10
25秒前
天天快乐应助勤恳绝义采纳,获得10
26秒前
Jasper应助微信采纳,获得10
26秒前
hxx完成签到,获得积分10
27秒前
Daisy发布了新的文献求助30
27秒前
TaoJ发布了新的文献求助10
27秒前
rongliy发布了新的文献求助10
28秒前
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737046
求助须知:如何正确求助?哪些是违规求助? 3280882
关于积分的说明 10021848
捐赠科研通 2997592
什么是DOI,文献DOI怎么找? 1644666
邀请新用户注册赠送积分活动 782100
科研通“疑难数据库(出版商)”最低求助积分说明 749707