A personalized recommendation method under the cloud platform based on users’ long-term preferences and instant interests

计算机科学 云计算 推荐系统 偏爱 产品(数学) 期限(时间) 情报检索 服务(商务) 对偶(语法数字) 协同过滤 人工智能 万维网 机器学习 物理 文学类 经济 艺术 经济 微观经济学 操作系统 量子力学 数学 几何学
作者
Huining Pei,Xinyu Liu,Xueqin Huang,Meng Wu,Zhiqiang Wen,Fanghua Zhao
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:54: 101763-101763 被引量:6
标识
DOI:10.1016/j.aei.2022.101763
摘要

Rich consumer online text data are embedded in the cloud platform. Using new technologies has become a central issue for acquiring consumer preference, analyzing consumer demand, and performing personalized recommendation services. In order to recommend the cloud platform services efficiently and accurately, this paper proposes a personalized recommendation model referred to as Residual bi-directional Recurrent Neural Network with Dual Attentive mechanism (BiRDA) for the service recommend to cloud platforms, by combining users’ long-term preferences with instant interest. The proposed recommender prototype is summarized as follows. (1) Analyzing the relationship between long-term preferences and instant interests based on co-opetition theory. (2) Extracting users’ online text data from the cloud platform. (3) Deriving the product attribute words of user preference using an analysis of online text data. (4) Product attribute words are transformed into the form of word vectors. (5) The word vector is input into the Residual bi-directional Recurrent Neural Network (Res-BiRNN) to make the prediction. On the one hand, the long-term preference is expressed by the user's field of expertise (i.e., answer content). On the other hand, the even interest is expressed by the user's changing interest (i.e., question data). (6) Assigning different weights to long-term preferences and instant interest using the dual attention mechanism to output predictions. (7) Generating recommendation lists for users based on the predicted values. Accordingly, BiRDA is compared with five state-of-the-art recommendation methods (i.e., DREAM, BINN, SHAN, Caser, and DeepMove), as well as six variants of the BiRDA model, Using users’ Q&A datasets from NiorcngeCDS cloud platform, XMAKE cloud platform, and Asksubarme cloud platform as examples. The experiments show that the proposed method is more efficient and accurate than the other models. Therefore, the study offers some important insights into allowing a large number of resources under the cloud platform to be fully utilized and provides a novel idea for the construction of the cloud platform front-end.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YutingHao发布了新的文献求助50
刚刚
aa发布了新的文献求助10
刚刚
Fiona发布了新的文献求助10
刚刚
ZO发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
尊敬火完成签到,获得积分10
3秒前
mansonycm发布了新的文献求助30
3秒前
hehe完成签到,获得积分10
3秒前
3秒前
哈哈完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
阿白发布了新的文献求助10
5秒前
陶醉的砖头完成签到,获得积分10
6秒前
风清扬应助Mamena采纳,获得30
7秒前
科研通AI5应助Patronus采纳,获得30
7秒前
7秒前
陈子旋完成签到,获得积分10
8秒前
斑斑发布了新的文献求助10
8秒前
任性英姑完成签到,获得积分10
8秒前
Jade发布了新的文献求助10
9秒前
科研通AI5应助稳重馒头采纳,获得10
9秒前
把妹王发布了新的文献求助10
9秒前
Ava应助医药两不通的研狗采纳,获得10
10秒前
jiaminzhao完成签到,获得积分10
11秒前
11秒前
8R60d8应助大力大神采纳,获得10
12秒前
啊啊啊啊完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
13秒前
刘志鹏发布了新的文献求助10
13秒前
把妹王完成签到,获得积分20
13秒前
14秒前
14秒前
14秒前
浮游应助我不到啊采纳,获得10
15秒前
Jade完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4867495
求助须知:如何正确求助?哪些是违规求助? 4159516
关于积分的说明 12898035
捐赠科研通 3913512
什么是DOI,文献DOI怎么找? 2149360
邀请新用户注册赠送积分活动 1167811
关于科研通互助平台的介绍 1070215