已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A personalized recommendation method under the cloud platform based on users’ long-term preferences and instant interests

计算机科学 云计算 推荐系统 偏爱 产品(数学) 期限(时间) 情报检索 服务(商务) 对偶(语法数字) 协同过滤 人工智能 万维网 机器学习 物理 文学类 经济 艺术 经济 微观经济学 操作系统 量子力学 数学 几何学
作者
Huining Pei,Xinyu Liu,Xueqin Huang,Meng Wu,Zhiqiang Wen,Fanghua Zhao
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:54: 101763-101763
标识
DOI:10.1016/j.aei.2022.101763
摘要

Rich consumer online text data are embedded in the cloud platform. Using new technologies has become a central issue for acquiring consumer preference, analyzing consumer demand, and performing personalized recommendation services. In order to recommend the cloud platform services efficiently and accurately, this paper proposes a personalized recommendation model referred to as Residual bi-directional Recurrent Neural Network with Dual Attentive mechanism (BiRDA) for the service recommend to cloud platforms, by combining users’ long-term preferences with instant interest. The proposed recommender prototype is summarized as follows. (1) Analyzing the relationship between long-term preferences and instant interests based on co-opetition theory. (2) Extracting users’ online text data from the cloud platform. (3) Deriving the product attribute words of user preference using an analysis of online text data. (4) Product attribute words are transformed into the form of word vectors. (5) The word vector is input into the Residual bi-directional Recurrent Neural Network (Res-BiRNN) to make the prediction. On the one hand, the long-term preference is expressed by the user's field of expertise (i.e., answer content). On the other hand, the even interest is expressed by the user's changing interest (i.e., question data). (6) Assigning different weights to long-term preferences and instant interest using the dual attention mechanism to output predictions. (7) Generating recommendation lists for users based on the predicted values. Accordingly, BiRDA is compared with five state-of-the-art recommendation methods (i.e., DREAM, BINN, SHAN, Caser, and DeepMove), as well as six variants of the BiRDA model, Using users’ Q&A datasets from NiorcngeCDS cloud platform, XMAKE cloud platform, and Asksubarme cloud platform as examples. The experiments show that the proposed method is more efficient and accurate than the other models. Therefore, the study offers some important insights into allowing a large number of resources under the cloud platform to be fully utilized and provides a novel idea for the construction of the cloud platform front-end.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cyn完成签到,获得积分10
1秒前
2秒前
郜雨寒发布了新的文献求助10
2秒前
开心完成签到 ,获得积分10
3秒前
guoguo关注了科研通微信公众号
5秒前
H_C完成签到,获得积分10
5秒前
明毓完成签到 ,获得积分10
6秒前
ALY12345发布了新的文献求助10
7秒前
老火发布了新的文献求助10
7秒前
8秒前
第五元素发布了新的文献求助10
9秒前
方方别方完成签到 ,获得积分10
10秒前
嗷呜嗷呜完成签到,获得积分10
11秒前
mbl0013发布了新的文献求助10
13秒前
1111完成签到 ,获得积分10
14秒前
杉进完成签到 ,获得积分10
19秒前
酸番茄完成签到 ,获得积分10
22秒前
yzxzdm完成签到 ,获得积分0
23秒前
24秒前
翻译度完成签到,获得积分10
25秒前
冷静的寒荷完成签到 ,获得积分10
27秒前
29秒前
fenmar发布了新的文献求助10
30秒前
31秒前
zly完成签到 ,获得积分10
34秒前
酷酷的哲完成签到,获得积分10
34秒前
amber完成签到 ,获得积分10
34秒前
35秒前
zhj发布了新的文献求助10
36秒前
英姑应助科研通管家采纳,获得10
39秒前
慕青应助科研通管家采纳,获得10
39秒前
梦见了一只电子猪完成签到,获得积分10
40秒前
小滨完成签到 ,获得积分20
41秒前
汉堡包应助zhj采纳,获得10
41秒前
阿司匹林完成签到 ,获得积分10
43秒前
tyd完成签到,获得积分10
49秒前
53秒前
神经哇发布了新的文献求助10
57秒前
医疗废物专用车乘客完成签到,获得积分10
57秒前
牛奶拌可乐完成签到 ,获得积分10
58秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139398
求助须知:如何正确求助?哪些是违规求助? 2790314
关于积分的说明 7794847
捐赠科研通 2446748
什么是DOI,文献DOI怎么找? 1301366
科研通“疑难数据库(出版商)”最低求助积分说明 626153
版权声明 601141