A personalized recommendation method under the cloud platform based on users’ long-term preferences and instant interests

计算机科学 云计算 推荐系统 偏爱 产品(数学) 期限(时间) 情报检索 服务(商务) 对偶(语法数字) 协同过滤 人工智能 万维网 机器学习 物理 文学类 经济 艺术 经济 微观经济学 操作系统 量子力学 数学 几何学
作者
Huining Pei,Xinyu Liu,Xueqin Huang,Meng Wu,Zhiqiang Wen,Fanghua Zhao
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:54: 101763-101763 被引量:6
标识
DOI:10.1016/j.aei.2022.101763
摘要

Rich consumer online text data are embedded in the cloud platform. Using new technologies has become a central issue for acquiring consumer preference, analyzing consumer demand, and performing personalized recommendation services. In order to recommend the cloud platform services efficiently and accurately, this paper proposes a personalized recommendation model referred to as Residual bi-directional Recurrent Neural Network with Dual Attentive mechanism (BiRDA) for the service recommend to cloud platforms, by combining users’ long-term preferences with instant interest. The proposed recommender prototype is summarized as follows. (1) Analyzing the relationship between long-term preferences and instant interests based on co-opetition theory. (2) Extracting users’ online text data from the cloud platform. (3) Deriving the product attribute words of user preference using an analysis of online text data. (4) Product attribute words are transformed into the form of word vectors. (5) The word vector is input into the Residual bi-directional Recurrent Neural Network (Res-BiRNN) to make the prediction. On the one hand, the long-term preference is expressed by the user's field of expertise (i.e., answer content). On the other hand, the even interest is expressed by the user's changing interest (i.e., question data). (6) Assigning different weights to long-term preferences and instant interest using the dual attention mechanism to output predictions. (7) Generating recommendation lists for users based on the predicted values. Accordingly, BiRDA is compared with five state-of-the-art recommendation methods (i.e., DREAM, BINN, SHAN, Caser, and DeepMove), as well as six variants of the BiRDA model, Using users’ Q&A datasets from NiorcngeCDS cloud platform, XMAKE cloud platform, and Asksubarme cloud platform as examples. The experiments show that the proposed method is more efficient and accurate than the other models. Therefore, the study offers some important insights into allowing a large number of resources under the cloud platform to be fully utilized and provides a novel idea for the construction of the cloud platform front-end.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
行道吉安发布了新的文献求助10
1秒前
6秒前
8秒前
8秒前
橙花完成签到 ,获得积分10
9秒前
9秒前
小汤完成签到 ,获得积分10
10秒前
木子发布了新的文献求助10
11秒前
13秒前
内向寒云发布了新的文献求助30
15秒前
0015发布了新的文献求助10
16秒前
17秒前
19秒前
健忘白完成签到,获得积分10
19秒前
Vera发布了新的文献求助10
19秒前
鹤随完成签到,获得积分10
19秒前
科研通AI2S应助科研狗采纳,获得10
19秒前
搞怪的老九完成签到,获得积分20
20秒前
科研通AI2S应助0015采纳,获得10
21秒前
领导范儿应助0015采纳,获得10
21秒前
21秒前
21秒前
榴莲受众完成签到,获得积分20
22秒前
Owen应助与山采纳,获得30
22秒前
顺心世倌完成签到,获得积分10
23秒前
大海完成签到,获得积分10
25秒前
菠萝吹雪发布了新的文献求助10
25秒前
26秒前
研友_想想发布了新的文献求助10
28秒前
CG1234567完成签到 ,获得积分10
28秒前
1282941496发布了新的文献求助10
29秒前
李BO完成签到 ,获得积分10
29秒前
32秒前
33秒前
33秒前
33秒前
wangchao1880发布了新的文献求助10
35秒前
慕青应助玉衡璇玑采纳,获得10
37秒前
37秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962151
求助须知:如何正确求助?哪些是违规求助? 3508388
关于积分的说明 11140723
捐赠科研通 3241093
什么是DOI,文献DOI怎么找? 1791332
邀请新用户注册赠送积分活动 872809
科研通“疑难数据库(出版商)”最低求助积分说明 803382