A personalized recommendation method under the cloud platform based on users’ long-term preferences and instant interests

计算机科学 云计算 推荐系统 偏爱 产品(数学) 期限(时间) 情报检索 服务(商务) 对偶(语法数字) 协同过滤 人工智能 万维网 机器学习 物理 文学类 经济 艺术 经济 微观经济学 操作系统 量子力学 数学 几何学
作者
Huining Pei,Xinyu Liu,Xueqin Huang,Meng Wu,Zhiqiang Wen,Fanghua Zhao
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:54: 101763-101763 被引量:6
标识
DOI:10.1016/j.aei.2022.101763
摘要

Rich consumer online text data are embedded in the cloud platform. Using new technologies has become a central issue for acquiring consumer preference, analyzing consumer demand, and performing personalized recommendation services. In order to recommend the cloud platform services efficiently and accurately, this paper proposes a personalized recommendation model referred to as Residual bi-directional Recurrent Neural Network with Dual Attentive mechanism (BiRDA) for the service recommend to cloud platforms, by combining users’ long-term preferences with instant interest. The proposed recommender prototype is summarized as follows. (1) Analyzing the relationship between long-term preferences and instant interests based on co-opetition theory. (2) Extracting users’ online text data from the cloud platform. (3) Deriving the product attribute words of user preference using an analysis of online text data. (4) Product attribute words are transformed into the form of word vectors. (5) The word vector is input into the Residual bi-directional Recurrent Neural Network (Res-BiRNN) to make the prediction. On the one hand, the long-term preference is expressed by the user's field of expertise (i.e., answer content). On the other hand, the even interest is expressed by the user's changing interest (i.e., question data). (6) Assigning different weights to long-term preferences and instant interest using the dual attention mechanism to output predictions. (7) Generating recommendation lists for users based on the predicted values. Accordingly, BiRDA is compared with five state-of-the-art recommendation methods (i.e., DREAM, BINN, SHAN, Caser, and DeepMove), as well as six variants of the BiRDA model, Using users’ Q&A datasets from NiorcngeCDS cloud platform, XMAKE cloud platform, and Asksubarme cloud platform as examples. The experiments show that the proposed method is more efficient and accurate than the other models. Therefore, the study offers some important insights into allowing a large number of resources under the cloud platform to be fully utilized and provides a novel idea for the construction of the cloud platform front-end.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
kento发布了新的文献求助80
2秒前
llm发布了新的文献求助20
4秒前
7秒前
7秒前
执着的寄凡完成签到,获得积分10
8秒前
豆腐干豆腐干是法国完成签到,获得积分20
9秒前
桃子发布了新的文献求助10
11秒前
11秒前
11秒前
6666发布了新的文献求助10
12秒前
13秒前
13秒前
阿秃发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
柔弱山菡完成签到 ,获得积分10
15秒前
swy发布了新的文献求助10
16秒前
虫子发布了新的文献求助10
17秒前
高兴冰双完成签到,获得积分10
17秒前
17秒前
和平发展完成签到,获得积分10
17秒前
18秒前
wanci应助难过的谷芹采纳,获得10
18秒前
yanganqi发布了新的文献求助10
19秒前
XCL应助清脆仙人掌采纳,获得10
20秒前
张i鹅发布了新的文献求助10
20秒前
21秒前
柳亦诚应助swy采纳,获得10
21秒前
子车茗应助swy采纳,获得10
21秒前
合适鲂完成签到,获得积分10
22秒前
子车茗应助自信的一兰采纳,获得10
22秒前
22秒前
24秒前
中森明菜发布了新的文献求助10
24秒前
闪闪的怀蝶完成签到,获得积分10
25秒前
26秒前
忐忑的蛋糕完成签到,获得积分10
27秒前
活力老少女完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4537634
求助须知:如何正确求助?哪些是违规求助? 3972559
关于积分的说明 12306211
捐赠科研通 3639257
什么是DOI,文献DOI怎么找? 2003762
邀请新用户注册赠送积分活动 1039127
科研通“疑难数据库(出版商)”最低求助积分说明 928535