Deep physics-aware stochastic seismic inversion

地震反演 反演(地质) 地震模拟 计算机科学 合成数据 储层建模 算法 地质学 地震学 数据挖掘 数据同化 构造学 物理 气象学 岩土工程
作者
Paula Yamada Bürkle,Leonardo Azevedo,Marley Vellasco
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (1): R11-R24 被引量:7
标识
DOI:10.1190/geo2021-0551.1
摘要

Seismic inversion allows the prediction of subsurface properties from seismic reflection data and is a key step in reservoir modeling and characterization. With the generalization of machine learning in geophysics, deep learning methods have been proposed as efficient seismic inversion methods. However, most of these methods lack a probabilistic approach to deal with the uncertainties inherent in the seismic inversion problem and/or rely on complete and representative training data, which often is partially or scarcely available. We have explored the ability of deep convolutional neural networks to extract meaningful and complex representations from spatially structured data, combined with geostatistical simulation, to efficiently invert poststack seismic data directly for high-resolution models of acoustic impedance. Our model incorporates physics constraints and sparse direct measurements while leveraging the use of imprecise but widely distributed indirect measurements as represented by the seismic data. The models generated with geostatistical simulation provide additional information with higher spatial resolution than the original seismic data and allow assessing uncertainty in the model predictions by generating multiple realizations of the subsurface properties. Our method can (1) provide an uncertainty assessment of the predictions, (2) model the complex and nonlinear relationship between data and model, (3) extend the seismic bandwidth at low and high ends of the frequency parameters spectrum, and (4) lessen the need for large, annotated training data. Our method is applied to a 1D synthetic example and a real 3D application example from a Brazilian reservoir. The predicted impedance models are compared with those obtained from a full iterative geostatistical seismic inversion. Our method allows retrieving similar models but has the advantage of generating alternative solutions in greater numbers, providing a larger exploration of the model parameter space in less time than the iterative geostatistical seismic inversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黎日新完成签到,获得积分10
1秒前
66完成签到,获得积分10
1秒前
1秒前
sun完成签到 ,获得积分10
1秒前
英俊的铭应助强健的糖豆采纳,获得10
1秒前
Tao完成签到,获得积分10
2秒前
zhaomr完成签到,获得积分10
2秒前
今后应助lyh采纳,获得10
4秒前
山复尔尔应助jiao采纳,获得10
4秒前
lllll完成签到,获得积分10
4秒前
past发布了新的文献求助10
4秒前
研友_VZG7GZ应助Chaimengdi采纳,获得10
4秒前
UU发布了新的文献求助10
5秒前
5秒前
知了完成签到,获得积分10
5秒前
5秒前
呆萌刺猬完成签到 ,获得积分10
5秒前
Liolsy发布了新的文献求助10
6秒前
CodeCraft应助cnas采纳,获得10
6秒前
7秒前
丘比特应助欣慰的天荷采纳,获得10
8秒前
小王完成签到,获得积分10
8秒前
高级的百香果完成签到,获得积分10
8秒前
丘比特应助山复尔尔采纳,获得30
9秒前
Litm完成签到 ,获得积分10
9秒前
坦率的傲芙完成签到,获得积分10
10秒前
砍柴少年发布了新的文献求助10
10秒前
feng完成签到,获得积分10
10秒前
10秒前
curtainai完成签到,获得积分10
10秒前
10秒前
少年完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
zhouzhou完成签到,获得积分10
12秒前
12秒前
凉风送信完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950635
求助须知:如何正确求助?哪些是违规求助? 3496094
关于积分的说明 11080521
捐赠科研通 3226507
什么是DOI,文献DOI怎么找? 1783918
邀请新用户注册赠送积分活动 867946
科研通“疑难数据库(出版商)”最低求助积分说明 800993