HGBER: Heterogeneous Graph Neural Network With Bidirectional Encoding Representation

计算机科学 理论计算机科学 图形 编码(内存) 代表(政治) 人工智能 法学 政治学 政治
作者
Yanbei Liu,Lianxi Fan,Xiao Wang,Zhitao Xiao,Shuai Ma,Yanwei Pang,Jerry Chun‐Wei Lin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (7): 9340-9351 被引量:1
标识
DOI:10.1109/tnnls.2022.3232709
摘要

Heterogeneous graphs with multiple types of nodes and link relationships are ubiquitous in many real-world applications. Heterogeneous graph neural networks (HGNNs) as an efficient technique have shown superior capacity of dealing with heterogeneous graphs. Existing HGNNs usually define multiple meta-paths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models only consider the simple relationships (i.e., concatenation or linear superposition) between different meta-paths, ignoring more general or complex relationships. In this article, we propose a novel unsupervised framework termed Heterogeneous Graph neural network with bidirectional encoding representation (HGBER) to learn comprehensive node representations. Specifically, the contrastive forward encoding is firstly performed to extract node representations on a set of meta-specific graphs corresponding to meta-paths. We then introduce the reversed encoding for the degradation process from the final node representations to each single meta-specific node representations. Moreover, to learn structure-preserving node representations, we further utilize a self-training module to discover the optimal node distribution through iterative optimization. Extensive experiments on five open public datasets show that the proposed HGBER model outperforms the state-of-the-art HGNNs baselines by 0.8%–8.4% in terms of accuracy on most datasets in various downstream tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
surain发布了新的文献求助30
刚刚
万能图书馆应助1111采纳,获得10
1秒前
万能图书馆应助专注人生采纳,获得10
1秒前
薛清棵完成签到 ,获得积分10
1秒前
小蛇玩完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
carlitos发布了新的文献求助10
4秒前
PWG完成签到,获得积分10
4秒前
乐枳发布了新的文献求助10
4秒前
4秒前
隐形曼青应助独特靖巧采纳,获得10
5秒前
慕青应助典雅的苗条采纳,获得10
7秒前
9秒前
我的miemie应助杨h采纳,获得20
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
z21完成签到,获得积分10
10秒前
超帅的访云完成签到,获得积分10
10秒前
11秒前
12秒前
14秒前
田忌赛马发布了新的文献求助10
15秒前
小二郎应助Vivian采纳,获得10
15秒前
大傻春完成签到 ,获得积分10
16秒前
孙朱珠发布了新的文献求助50
17秒前
独特靖巧发布了新的文献求助10
17秒前
归尘发布了新的文献求助10
21秒前
TAZIA发布了新的文献求助10
21秒前
21秒前
田忌赛马完成签到,获得积分10
22秒前
22秒前
23秒前
25秒前
雷小仙儿发布了新的文献求助10
26秒前
adore完成签到,获得积分20
27秒前
28秒前
欢乐城完成签到,获得积分10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954414
求助须知:如何正确求助?哪些是违规求助? 3500373
关于积分的说明 11099295
捐赠科研通 3230866
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801689