Engineering the Electronic Structure of Single‐Atom Iron Sites with Boosted Oxygen Bifunctional Activity for Zinc–Air Batteries

双功能 过电位 材料科学 析氧 电解质 双功能催化剂 电池(电) 介孔材料 金属 化学工程 无机化学 冶金 物理化学 电化学 有机化学 催化作用 电极 化学 工程类 功率(物理) 物理 量子力学
作者
Zhijun Li,Siqi Ji,Chang Xu,Leipeng Leng,Hongxue Liu,J. Hugh Horton,Lei Du,Jincheng Gao,Cheng He,Xiaoying Qi,Qian Xu,Junfa Zhu
出处
期刊:Advanced Materials [Wiley]
卷期号:35 (9) 被引量:142
标识
DOI:10.1002/adma.202209644
摘要

Abstract Rechargeable zinc–air batteries typically require efficient, durable, and inexpensive bifunctional electrocatalysts to support oxygen reduction/evolution reactions (ORR/OER). However, sluggish kinetics and mass transportation challenges must be addressed if the performance of these catalysts is to be enhanced. Herein, a strategy to fabricate a catalyst comprising atomically dispersed iron atoms supported on a mesoporous nitrogen‐doped carbon support (Fe SAs/NC) with accessible metal sites and optimized electronic metal–support interactions is developed. Both the experimental results and theoretical calculations reveal that the engineered electronic structures of the metal active sites can regulate the charge distribution of Fe centers to optimize the adsorption/desorption of oxygenated intermediates. The Fe SAs/NC containing Fe 1 N 4 O 1 sites achieves remarkable ORR activity over the entire pH range, with half‐wave potentials of 0.93, 0.83, and 0.75 V (vs reversible hydrogen electrode) in alkaline, acidic, and neutral electrolytes, respectively. In addition, it demonstrates a promising low overpotential of 320 mV at 10 mA cm −2 for OER in alkaline conditions. The zinc–air battery assembled with Fe SAs/NC exhibits superior performance than that of Pt/C+RuO 2 counterpart in terms of peak power density, specific capacity, and cycling stability. These findings demonstrate the importance of the electronic structure engineering of metal sites in directing catalytic activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助garyaa采纳,获得10
刚刚
DAN_完成签到,获得积分10
1秒前
1秒前
科研通AI2S应助屹舟采纳,获得10
1秒前
科研通AI5应助一一采纳,获得10
2秒前
隐形的紫菜完成签到,获得积分10
2秒前
23132发布了新的文献求助10
3秒前
cora完成签到,获得积分10
4秒前
放眼天下完成签到 ,获得积分10
5秒前
文毛完成签到,获得积分10
5秒前
5秒前
6秒前
兴奋的问旋完成签到,获得积分10
6秒前
张张完成签到,获得积分10
6秒前
陈文学完成签到,获得积分10
7秒前
一一发布了新的文献求助10
7秒前
bkagyin应助潇洒的冷玉采纳,获得10
8秒前
通~发布了新的文献求助10
8秒前
8秒前
芒果完成签到,获得积分10
8秒前
9秒前
cly3397完成签到,获得积分10
9秒前
开心发布了新的文献求助10
9秒前
9秒前
少年发布了新的文献求助10
10秒前
天天快乐应助阿毛采纳,获得10
10秒前
Jenny应助狂野的以珊采纳,获得10
10秒前
11秒前
11秒前
12秒前
13秒前
研友_LMNjkn发布了新的文献求助10
13秒前
ding应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
yizhiGao应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794