Peng Zhang,Jun Zheng,Hailun Lin,Chen Liu,Zhuofeng Zhao,Chao Li
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers] 日期:2023-01-02卷期号:24 (11): 13088-13098被引量:24
标识
DOI:10.1109/tits.2022.3178182
摘要
It aims to improve the efficiency of information collection and extraction in the current intelligent transportation system, and accurately mine the vehicle trajectory data By using Artificial Intelligence (AI) and Deep Learning methods, the trajectory data generated during vehicle driving are deeply mined and analyzed, and the characteristics of driving behavior of vehicle drivers are modeled and analyzed in detail. Then, a method of mining driving behavior characteristics based on Convolutional Neural Network (CNN) and vehicle trajectory is proposed. Based on the mathematical principle of wavelet packet and Least Square Support Vector Machine (LSSVM), a combined model of trajectory mining is constructed and applied to the short-term prediction of traffic flow. The traffic flow of Binjiang Road and Renmin Road in Guangzhou, Guangdong Province from August 19 to August 21, 2021 is predicted to verify the accuracy of the trajectory mining combined model. The results show that the combination model of data mining has good fitting effect, and the average accuracy is above 0.8. Besides, the effectiveness of the Deep Learning model in driver behavior classification is verified. The accuracy of the classification model is 75.2% for trajectory, and that is 76.8% for driver behavior characteristics. It is of great significance to effectively utilize the knowledge data in Intelligent Transportation System (ITS) and extract valuable information from it, which has certain reference value for the subsequent refined prediction of vehicle behavior.