人工智能
计算机科学
雷达
计算机视觉
过程(计算)
目标检测
方向(向量空间)
模式识别(心理学)
特征提取
代表(政治)
对象(语法)
班级(哲学)
特征选择
传感器融合
雷达成像
视觉对象识别的认知神经科学
探测器
数学
电信
几何学
政治
政治学
法学
操作系统
作者
Zhengping Ji,Danil Prokhorov
出处
期刊:International Conference on Information Fusion
日期:2008-09-26
卷期号:: 1-7
被引量:10
摘要
We propose an object classification system that incorporates information from a video camera and an automotive radar. The system implements three processes. The first process is attention selection, in which the radar guides a selection of a small number of candidate images for analysis by the camera and our learning method. In the second process, normalized attention windows are processed by orientation-selective feature detectors, generating a sparse representation for each window. In the final process, a multilayer in-place learning network is used to distinguish sparse representations of different objects. Though it is more flexible in terms of variety of classification tasks, the system currently demonstrates its high accuracy in comparison with others on real-world data of a two-class recognition problem.
科研通智能强力驱动
Strongly Powered by AbleSci AI