Performance of today's dual energy CT and future multi energy CT in virtual non‐contrast imaging and in iodine quantification: A simulation study

数字增强无线通信 光子计数 探测器 图像质量 迭代重建 计算机科学 能量(信号处理) X射线探测器 光学 物理 人工智能 图像(数学) 量子力学 电信 无线
作者
Sebastian Faby,Stefan Kuchenbecker,Stefan Sawall,David Simons,Heinz‐Peter Schlemmer,Michael Lell,Marc Kachelrieß
出处
期刊:Medical Physics [Wiley]
卷期号:42 (7): 4349-4366 被引量:204
标识
DOI:10.1118/1.4922654
摘要

To study the performance of different dual energy computed tomography (DECT) techniques, which are available today, and future multi energy CT (MECT) employing novel photon counting detectors in an image-based material decomposition task.The material decomposition performance of different energy-resolved CT acquisition techniques is assessed and compared in a simulation study of virtual non-contrast imaging and iodine quantification. The material-specific images are obtained via a statistically optimal image-based material decomposition. A projection-based maximum likelihood approach was used for comparison with the authors' image-based method. The different dedicated dual energy CT techniques are simulated employing realistic noise models and x-ray spectra. The authors compare dual source DECT with fast kV switching DECT and the dual layer sandwich detector DECT approach. Subsequent scanning and a subtraction method are studied as well. Further, the authors benchmark future MECT with novel photon counting detectors in a dedicated DECT application against the performance of today's DECT using a realistic model. Additionally, possible dual source concepts employing photon counting detectors are studied.The DECT comparison study shows that dual source DECT has the best performance, followed by the fast kV switching technique and the sandwich detector approach. Comparing DECT with future MECT, the authors found noticeable material image quality improvements for an ideal photon counting detector; however, a realistic detector model with multiple energy bins predicts a performance on the level of dual source DECT at 100 kV/Sn 140 kV. Employing photon counting detectors in dual source concepts can improve the performance again above the level of a single realistic photon counting detector and also above the level of dual source DECT.Substantial differences in the performance of today's DECT approaches were found for the application of virtual non-contrast and iodine imaging. Future MECT with realistic photon counting detectors currently can only perform comparably to dual source DECT at 100 kV/Sn 140 kV. Dual source concepts with photon counting detectors could be a solution to this problem, promising a better performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助WYQ采纳,获得10
刚刚
Apple发布了新的文献求助10
刚刚
Piana完成签到 ,获得积分10
1秒前
埃及下雨了完成签到,获得积分10
1秒前
科研通AI6应助小易采纳,获得10
1秒前
polymershi完成签到,获得积分10
2秒前
zfd完成签到,获得积分10
2秒前
白华苍松发布了新的文献求助10
2秒前
无限行之发布了新的文献求助10
2秒前
科研通AI2S应助Gin_采纳,获得10
3秒前
皮皮完成签到 ,获得积分10
3秒前
4秒前
4秒前
mao发布了新的文献求助30
4秒前
我是老大应助微信研友采纳,获得10
4秒前
Rico发布了新的文献求助10
5秒前
olia发布了新的文献求助10
5秒前
dingdind发布了新的文献求助30
6秒前
6秒前
6秒前
7秒前
谦让的语雪完成签到,获得积分10
7秒前
lcs发布了新的文献求助10
7秒前
7秒前
7秒前
CipherSage应助鳗鱼匕采纳,获得10
8秒前
李爱国应助燕天与采纳,获得10
9秒前
科研通AI6应助polymershi采纳,获得30
9秒前
AD应助踏实芫采纳,获得10
9秒前
sss发布了新的文献求助10
9秒前
caizhuang123发布了新的文献求助10
9秒前
Away发布了新的文献求助10
10秒前
chen发布了新的文献求助10
10秒前
fx发布了新的文献求助10
10秒前
10秒前
xzccmm发布了新的文献求助30
11秒前
Gavin_Li完成签到,获得积分10
11秒前
慕青应助明ming到此一游采纳,获得10
11秒前
11秒前
11秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587388
求助须知:如何正确求助?哪些是违规求助? 4670503
关于积分的说明 14783142
捐赠科研通 4622601
什么是DOI,文献DOI怎么找? 2531265
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066