Sequential Sales, Learning, and Cascades

经济 业务 计算机科学
作者
Ivo Welch
出处
期刊:Journal of Finance [Wiley]
卷期号:47 (2): 695-732 被引量:931
标识
DOI:10.1111/j.1540-6261.1992.tb04406.x
摘要

When IPO shares are sold sequentially, later potential investors can learn from the purchasing decisions of earlier investors. This can lead rapidly to cascades in which subsequent investors optimally ignore their private information and imitate earlier investors. Although rationing in this situation gives rise to a winner's curse, it is irrelevant. The model predicts that: (1) Offerings succeed or fail rapidly. (2) Demand can be so elastic that even risk-neutral issuers underprice to completely avoid failure. (3) Issuers with good inside information can price their shares so high that they sometimes fail. (4) An underwriter may want to reduce the communication among investors by spreading the selling effort over a more segmented market. CONSIDER A SCENARIO IN which an issuer is selling a new security of uncertain value, for example, an IPO (initial public offering) of stock or high-yield debt, through an underwriter. The S.E.C. has banned variable -price sales. While the value of this new security is highly uncertain to individual market participants, investors hold perfectly accurate information when aggregated. Moreover, there are many (potential) investors, and a small number of these investors can jointly determine the value of the firm (or its project) with high precision. It would seem that in this scenario underpriced offerings would succeed and overpriced offerings would fail. Nevertheless, this paper shows that, if the distribution channels of invest ment banks are limited, underpriced offerings can fail and overpriced offer ings can succeed. With limited distribution channels, it takes the under writer 'time to approach interested investors. Therefore, later investors can observe how well an offering has sold to date -- or at least how successful it has sold relative to offerings previously undertaken by this underwriter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
冯不言完成签到,获得积分10
1秒前
希音完成签到 ,获得积分10
1秒前
淡然冬灵发布了新的文献求助30
2秒前
2秒前
随心完成签到,获得积分10
2秒前
LL发布了新的文献求助10
3秒前
吴寒发布了新的文献求助10
3秒前
乐呵乐呵的完成签到,获得积分20
3秒前
科研通AI5应助yhq采纳,获得10
3秒前
研友_08ozgZ发布了新的文献求助10
3秒前
3秒前
科目三应助语言采纳,获得10
4秒前
核桃发布了新的文献求助10
4秒前
科研通AI6应助东京芝士123采纳,获得10
4秒前
4秒前
wenhao完成签到 ,获得积分10
5秒前
科研通AI6应助YJZ采纳,获得10
5秒前
6秒前
6秒前
6秒前
小二郎应助阳炎采纳,获得10
6秒前
7秒前
彭Prrrr发布了新的文献求助30
7秒前
丘比特应助hd采纳,获得10
7秒前
8秒前
活泼文涛发布了新的文献求助10
8秒前
布溜应助吴寒采纳,获得10
8秒前
赘婿应助YYL采纳,获得10
9秒前
公冶愚志完成签到 ,获得积分10
9秒前
cookie完成签到,获得积分10
9秒前
10秒前
10秒前
中国任完成签到 ,获得积分10
10秒前
yy完成签到,获得积分10
10秒前
cc完成签到 ,获得积分10
10秒前
11秒前
威武天抒发布了新的文献求助10
11秒前
生动孤丝发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
A Case Study on Hotels as Noncongregate Emergency Living Accommodations for Returning Citizens 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5017460
求助须知:如何正确求助?哪些是违规求助? 4257073
关于积分的说明 13267567
捐赠科研通 4061370
什么是DOI,文献DOI怎么找? 2221225
邀请新用户注册赠送积分活动 1230555
关于科研通互助平台的介绍 1153161