Sequential Sales, Learning, and Cascades

经济 业务 计算机科学
作者
Ivo Welch
出处
期刊:Journal of Finance [Wiley]
卷期号:47 (2): 695-732 被引量:931
标识
DOI:10.1111/j.1540-6261.1992.tb04406.x
摘要

When IPO shares are sold sequentially, later potential investors can learn from the purchasing decisions of earlier investors. This can lead rapidly to cascades in which subsequent investors optimally ignore their private information and imitate earlier investors. Although rationing in this situation gives rise to a winner's curse, it is irrelevant. The model predicts that: (1) Offerings succeed or fail rapidly. (2) Demand can be so elastic that even risk-neutral issuers underprice to completely avoid failure. (3) Issuers with good inside information can price their shares so high that they sometimes fail. (4) An underwriter may want to reduce the communication among investors by spreading the selling effort over a more segmented market. CONSIDER A SCENARIO IN which an issuer is selling a new security of uncertain value, for example, an IPO (initial public offering) of stock or high-yield debt, through an underwriter. The S.E.C. has banned variable -price sales. While the value of this new security is highly uncertain to individual market participants, investors hold perfectly accurate information when aggregated. Moreover, there are many (potential) investors, and a small number of these investors can jointly determine the value of the firm (or its project) with high precision. It would seem that in this scenario underpriced offerings would succeed and overpriced offerings would fail. Nevertheless, this paper shows that, if the distribution channels of invest ment banks are limited, underpriced offerings can fail and overpriced offer ings can succeed. With limited distribution channels, it takes the under writer 'time to approach interested investors. Therefore, later investors can observe how well an offering has sold to date -- or at least how successful it has sold relative to offerings previously undertaken by this underwriter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chaosyw完成签到,获得积分10
1秒前
七里海完成签到,获得积分10
1秒前
kit完成签到,获得积分10
2秒前
王盼盼完成签到,获得积分10
2秒前
2秒前
重要板凳完成签到 ,获得积分10
2秒前
ffff完成签到,获得积分10
3秒前
静心完成签到,获得积分10
4秒前
沉静的红酒完成签到,获得积分10
5秒前
XXXXH完成签到,获得积分10
5秒前
平头哥哥完成签到 ,获得积分10
5秒前
拉长的元芹完成签到,获得积分10
6秒前
米共完成签到 ,获得积分10
6秒前
6秒前
zmuzhang2019完成签到,获得积分10
7秒前
NexusExplorer应助小酒窝采纳,获得30
7秒前
7秒前
体贴的荣轩完成签到,获得积分10
7秒前
夏雨的天发布了新的文献求助10
7秒前
四月是你的谎言完成签到 ,获得积分10
8秒前
科研螺丝完成签到 ,获得积分10
8秒前
WindDreamer完成签到,获得积分10
8秒前
PSL完成签到,获得积分10
8秒前
9秒前
9秒前
shamy夫妇完成签到,获得积分10
9秒前
麻花阳应助墨染书香采纳,获得10
9秒前
黄瓜橙橙完成签到,获得积分0
10秒前
阿布与小佛完成签到 ,获得积分10
10秒前
胖大海完成签到 ,获得积分10
10秒前
苹果以云完成签到,获得积分20
10秒前
小汪同学完成签到,获得积分10
11秒前
11秒前
聪明的冰真完成签到 ,获得积分10
11秒前
17完成签到 ,获得积分10
12秒前
单薄的冷风完成签到,获得积分10
12秒前
火星上的沛春完成签到,获得积分10
12秒前
暴走诺亚发布了新的文献求助10
13秒前
大气指甲油完成签到,获得积分10
13秒前
LYZ完成签到,获得积分10
13秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
A Dissection Guide & Atlas to the Rabbit 600
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 500
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3104200
求助须知:如何正确求助?哪些是违规求助? 2755475
关于积分的说明 7633050
捐赠科研通 2408918
什么是DOI,文献DOI怎么找? 1278094
科研通“疑难数据库(出版商)”最低求助积分说明 617279
版权声明 599207