Sequential Sales, Learning, and Cascades

经济 业务 计算机科学
作者
Ivo Welch
出处
期刊:Journal of Finance [Wiley]
卷期号:47 (2): 695-732 被引量:931
标识
DOI:10.1111/j.1540-6261.1992.tb04406.x
摘要

When IPO shares are sold sequentially, later potential investors can learn from the purchasing decisions of earlier investors. This can lead rapidly to cascades in which subsequent investors optimally ignore their private information and imitate earlier investors. Although rationing in this situation gives rise to a winner's curse, it is irrelevant. The model predicts that: (1) Offerings succeed or fail rapidly. (2) Demand can be so elastic that even risk-neutral issuers underprice to completely avoid failure. (3) Issuers with good inside information can price their shares so high that they sometimes fail. (4) An underwriter may want to reduce the communication among investors by spreading the selling effort over a more segmented market. CONSIDER A SCENARIO IN which an issuer is selling a new security of uncertain value, for example, an IPO (initial public offering) of stock or high-yield debt, through an underwriter. The S.E.C. has banned variable -price sales. While the value of this new security is highly uncertain to individual market participants, investors hold perfectly accurate information when aggregated. Moreover, there are many (potential) investors, and a small number of these investors can jointly determine the value of the firm (or its project) with high precision. It would seem that in this scenario underpriced offerings would succeed and overpriced offerings would fail. Nevertheless, this paper shows that, if the distribution channels of invest ment banks are limited, underpriced offerings can fail and overpriced offer ings can succeed. With limited distribution channels, it takes the under writer 'time to approach interested investors. Therefore, later investors can observe how well an offering has sold to date -- or at least how successful it has sold relative to offerings previously undertaken by this underwriter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助风清扬采纳,获得10
1秒前
打打应助风清扬采纳,获得10
1秒前
1秒前
sc发布了新的文献求助10
1秒前
1秒前
3秒前
wyg1994发布了新的文献求助10
5秒前
6秒前
6秒前
领导范儿应助形随将至采纳,获得10
7秒前
8秒前
水心完成签到 ,获得积分10
9秒前
10秒前
许思真完成签到,获得积分10
10秒前
谦谦神棍发布了新的文献求助10
12秒前
药学小团子完成签到 ,获得积分10
13秒前
leehong发布了新的文献求助10
13秒前
asdlxz发布了新的文献求助10
14秒前
Joshua完成签到,获得积分0
15秒前
土土完成签到,获得积分10
15秒前
by完成签到,获得积分10
15秒前
鲤角兽发布了新的文献求助10
16秒前
wanci应助hope采纳,获得10
17秒前
18秒前
19秒前
形随将至发布了新的文献求助10
24秒前
善学以致用应助wdy337采纳,获得10
26秒前
zzz完成签到 ,获得积分10
26秒前
完美世界应助鲤角兽采纳,获得10
28秒前
leehong完成签到,获得积分20
28秒前
直率的宛海完成签到,获得积分10
29秒前
asdlxz完成签到,获得积分20
29秒前
翻斗花园爆破手小胡完成签到,获得积分10
31秒前
Zu发布了新的文献求助10
32秒前
33秒前
受伤的严青完成签到 ,获得积分10
34秒前
35秒前
橙子完成签到 ,获得积分10
35秒前
37秒前
Bacon发布了新的文献求助10
38秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457592
求助须知:如何正确求助?哪些是违规求助? 4563953
关于积分的说明 14292461
捐赠科研通 4488625
什么是DOI,文献DOI怎么找? 2458659
邀请新用户注册赠送积分活动 1448644
关于科研通互助平台的介绍 1424323