Sequential Sales, Learning, and Cascades

经济 业务 计算机科学
作者
Ivo Welch
出处
期刊:Journal of Finance [Wiley]
卷期号:47 (2): 695-732 被引量:931
标识
DOI:10.1111/j.1540-6261.1992.tb04406.x
摘要

When IPO shares are sold sequentially, later potential investors can learn from the purchasing decisions of earlier investors. This can lead rapidly to cascades in which subsequent investors optimally ignore their private information and imitate earlier investors. Although rationing in this situation gives rise to a winner's curse, it is irrelevant. The model predicts that: (1) Offerings succeed or fail rapidly. (2) Demand can be so elastic that even risk-neutral issuers underprice to completely avoid failure. (3) Issuers with good inside information can price their shares so high that they sometimes fail. (4) An underwriter may want to reduce the communication among investors by spreading the selling effort over a more segmented market. CONSIDER A SCENARIO IN which an issuer is selling a new security of uncertain value, for example, an IPO (initial public offering) of stock or high-yield debt, through an underwriter. The S.E.C. has banned variable -price sales. While the value of this new security is highly uncertain to individual market participants, investors hold perfectly accurate information when aggregated. Moreover, there are many (potential) investors, and a small number of these investors can jointly determine the value of the firm (or its project) with high precision. It would seem that in this scenario underpriced offerings would succeed and overpriced offerings would fail. Nevertheless, this paper shows that, if the distribution channels of invest ment banks are limited, underpriced offerings can fail and overpriced offer ings can succeed. With limited distribution channels, it takes the under writer 'time to approach interested investors. Therefore, later investors can observe how well an offering has sold to date -- or at least how successful it has sold relative to offerings previously undertaken by this underwriter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜电源发布了新的文献求助10
刚刚
小C完成签到,获得积分10
1秒前
123完成签到,获得积分10
1秒前
热情铭完成签到 ,获得积分10
1秒前
1秒前
1111应助dopamine采纳,获得10
1秒前
天天发布了新的文献求助10
2秒前
戴帽子的花盆完成签到,获得积分10
2秒前
why完成签到 ,获得积分10
2秒前
han完成签到,获得积分10
2秒前
梁云发布了新的文献求助10
3秒前
小二郎应助甜菜采纳,获得10
4秒前
Akim应助腼腆的小女孩采纳,获得10
4秒前
Orange应助戴昕东采纳,获得10
4秒前
4秒前
5秒前
研友_VZG7GZ应助沐兮采纳,获得10
5秒前
量子星尘发布了新的文献求助10
7秒前
xiaohu完成签到,获得积分10
7秒前
8秒前
9秒前
liuliu发布了新的文献求助10
9秒前
yyy1234567完成签到 ,获得积分10
10秒前
cc发布了新的文献求助10
11秒前
dopamine完成签到,获得积分10
12秒前
Phe发布了新的文献求助10
12秒前
13秒前
英吉利25发布了新的文献求助10
14秒前
14秒前
善良依瑶发布了新的文献求助50
15秒前
16秒前
蓓蓓0303发布了新的文献求助10
17秒前
18秒前
18秒前
天天发布了新的文献求助10
18秒前
体贴觅云完成签到,获得积分10
19秒前
归诫发布了新的文献求助10
20秒前
张广雪发布了新的文献求助10
22秒前
长情的语风完成签到 ,获得积分10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419574
求助须知:如何正确求助?哪些是违规求助? 4534806
关于积分的说明 14147001
捐赠科研通 4451480
什么是DOI,文献DOI怎么找? 2441759
邀请新用户注册赠送积分活动 1433376
关于科研通互助平台的介绍 1410616