Halide-Dependent Electronic Structure of Organolead Perovskite Materials

卤化物 三碘化物 钙钛矿(结构) 材料科学 化学物理 无机化学 化学 微晶 结晶学 物理化学 电极 色素敏化染料 电解质
作者
Andrei Buin,Riccardo Comin,Jixian Xu,Alexander H. Ip,Thomas Burdyny
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:27 (12): 4405-4412 被引量:321
标识
DOI:10.1021/acs.chemmater.5b01909
摘要

Organometal halide perovskites have recently attracted tremendous attention both at the experimental and theoretical levels. These materials, in particular methylammonium triiodide, are still limited by poor chemical and structural stability under ambient conditions. Today this represents one of the major challenges for polycrystalline perovskite-based photovoltaic technology. In addition to this, the performance of perovskite-based devices is degraded by deep localized states, or traps. To achieve better-performing devices, it is necessary to understand the nature of these states and the mechanisms that lead to their formation. Here we show that the major sources of deep traps in the different halide systems have different origin and character. Halide vacancies are shallow donors in I-based perovskites, whereas they evolve into a major source of traps in Cl-based perovskites. Lead interstitials, which can form lead dimers, are the dominant source of defects in Br-based perovskites, in line with recent experimental data. As a result, the optimal growth conditions are also different for the distinct halide perovskites: growth should be halide-rich for Br and Cl, and halide-poor for I-based perovskites. We discuss stability in relation to the reaction enthalpies of mixtures of bulk precursors with respect to final perovskite product. Methylammonium lead triiodide is characterized by the lowest reaction enthalpy, explaining its low stability. At the opposite end, the highest stability was found for the methylammonium lead trichloride, also consistent with our experimental findings which show no observable structural variations over an extended period of time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Hungrylunch给woshiwuziq的求助进行了留言
1秒前
传奇3应助cruise采纳,获得10
1秒前
艺玲发布了新的文献求助10
1秒前
1秒前
我是老大应助sun采纳,获得10
2秒前
柔弱煎饼完成签到,获得积分10
2秒前
SY发布了新的文献求助10
2秒前
暗能量完成签到,获得积分10
2秒前
刘星星完成签到,获得积分10
2秒前
科研通AI5应助yan采纳,获得10
3秒前
蒋念寒发布了新的文献求助10
3秒前
zyp完成签到,获得积分10
3秒前
dldddz完成签到,获得积分10
3秒前
二二二完成签到,获得积分20
3秒前
动听导师发布了新的文献求助10
4秒前
龙潜筱完成签到,获得积分10
4秒前
明天过后完成签到,获得积分10
4秒前
4秒前
在水一方应助weddcf采纳,获得10
4秒前
5秒前
沉默越彬完成签到,获得积分10
5秒前
Nicho发布了新的文献求助10
6秒前
6秒前
蓦然回首完成签到,获得积分10
6秒前
6秒前
Owen应助七大洋的风采纳,获得10
7秒前
7秒前
科研通AI5应助一平采纳,获得80
7秒前
wxwang完成签到,获得积分10
7秒前
廖同学完成签到 ,获得积分10
8秒前
orixero应助李家乐采纳,获得10
8秒前
9秒前
9秒前
lujiajia发布了新的文献求助10
9秒前
10秒前
啊啊啊啊啊叶完成签到 ,获得积分10
10秒前
LLL完成签到 ,获得积分10
10秒前
sanyecao383完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678