Molecular simulation of methane adsorption in shale based on grand canonical Monte Carlo method and pore size distribution

吸附 甲烷 比表面积 油页岩 化学工程 化学 矿物学 材料科学 地质学 物理化学 有机化学 古生物学 工程类 催化作用
作者
Yu Liu,Yanming Zhu,Wu Li,Jianhua Xiang,Yang Wang,Jiahong Li,Fangui Zeng
出处
期刊:Journal of Natural Gas Science and Engineering [Elsevier]
卷期号:30: 119-126 被引量:90
标识
DOI:10.1016/j.jngse.2016.01.046
摘要

To explore the influence of the pore size distribution on the methane adsorption capacity of shale, methane adsorption amount for different pore sizes has been calculated by using the simulation results and pore size distribution data. In the study, excess adsorption per unit area of different pore sizes has been simulated by the grand canonical Monte Carlo (GCMC) method. And the pore size distribution of Longmaxi Formation shale samples was characterized by high pressure mercury injection (HPMI) experiment, low pressure nitrogen adsorption (LP-N2-GA) experiment, and low pressure CO2 adsorption (LP-CO2-GA) experiment. The results indicate that in the range of 0.5–1.5 nm, the excess adsorption per unit area shows a stepped increase with the pore size increasing. When the pore size is larger than 1.5 nm, the excess adsorption per unit area keep unchanged with the increase in pore size. According to the methane adsorption capacity and pore surface area, pores in the shale samples can be divided to three parts: <1 nm, 1–4 nm, >4 nm. Pores in the first part (width <1 nm) have a large specific surface area, but the excess adsorption per unit area is much smaller than other pores. They account for about 65% of the total specific surface area, while accounting for only 48% of the total adsorption amount. Pores in the second part (1–4 nm) have a large specific pore area and large methane adsorption capacity. They provide 30% of the total specific surface area, while providing 44% of the total adsorption amount. Pores in the third part (width >4 nm) contribute only 8% of total adsorption amount as the specific surface area of these pores is notably small.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助高大从雪采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
2秒前
动人的莞完成签到,获得积分10
2秒前
2秒前
LZR完成签到,获得积分10
2秒前
Yan0909完成签到,获得积分10
2秒前
沉静白翠发布了新的文献求助10
3秒前
3秒前
4秒前
谦让的博完成签到,获得积分10
4秒前
无花果应助邹秋雨采纳,获得10
4秒前
4秒前
Amyur完成签到,获得积分10
4秒前
wan4221完成签到,获得积分10
5秒前
5秒前
GG发布了新的文献求助10
5秒前
glow完成签到,获得积分10
5秒前
动人的莞发布了新的文献求助100
5秒前
唯有发布了新的文献求助10
6秒前
靴子完成签到,获得积分10
6秒前
完美世界应助Yan0909采纳,获得10
6秒前
脑洞疼应助姬因采纳,获得10
7秒前
打打应助鲤黎黎采纳,获得10
7秒前
我wo发布了新的文献求助10
7秒前
丰富无色完成签到,获得积分10
7秒前
7秒前
cyy发布了新的文献求助10
7秒前
明亮的蝴蝶完成签到,获得积分20
7秒前
程雪霞发布了新的文献求助30
7秒前
轻歌水越发布了新的文献求助10
8秒前
8秒前
自信雪冥完成签到,获得积分10
8秒前
taotie发布了新的文献求助10
9秒前
9秒前
爆米花应助135gcl采纳,获得10
9秒前
Mei完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836