亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel network and sparsity constraint regression model for functional module identification in genomic data analysis

鉴定(生物学) 约束(计算机辅助设计) 回归分析 回归 计算机科学 计算生物学 数据挖掘 生物 统计 数学 机器学习 几何学 植物
作者
Zheng Xia,Wei Chen,Chunqi Chang,Xiaobo Zhou
出处
期刊:International Journal of Data Mining and Bioinformatics [Inderscience Enterprises Ltd.]
卷期号:8 (3): 311-311 被引量:2
标识
DOI:10.1504/ijdmb.2013.056081
摘要

It is important to incorporate the accumulated biological pathways and interactions knowledge into genome-wide association studies to elucidate correlations between genetic variants and disease. Although a number of methods have been developed recently to identify disease related genes using prior biological knowledge, most methods only encourage the smoothness of the coefficients along the network which does not address the case where two connected genes both have positive or negative effects on the response. To overcome this issue, we propose to apply the Laplacian operation on the absolute values of the coefficients to take account of the positive and negative effects as well as a L1 norm term to impose sparsity. Further, an efficient algorithm is developed to get the whole solution path. Simulation studies show that the proposed method has better performance than network-constrained regularisation without absolute values. Applying our method on a microarray data of Alzheimer's disease (AD) identifies several subnetworks on Kyoto Encyclopedia of Genes and Genomes (KEGG) transcriptional pathways that are related to progression of AD. Many of those findings are confirmed by published literature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洋葱发布了新的文献求助10
1秒前
一米六发布了新的文献求助10
7秒前
慕青应助牛油果采纳,获得10
10秒前
只谈风月完成签到,获得积分10
13秒前
腼腆的寒风完成签到 ,获得积分10
14秒前
17秒前
科研大王完成签到,获得积分10
17秒前
leoskrrr完成签到,获得积分10
21秒前
牛油果发布了新的文献求助10
22秒前
Han完成签到 ,获得积分10
32秒前
顾矜应助乐求知采纳,获得10
47秒前
51秒前
59秒前
浮游漂漂应助科研通管家采纳,获得30
59秒前
Xx完成签到 ,获得积分10
1分钟前
踏实的绣连完成签到 ,获得积分10
1分钟前
111发布了新的文献求助10
1分钟前
yr应助牛油果采纳,获得10
1分钟前
1分钟前
1分钟前
summer完成签到,获得积分20
1分钟前
1分钟前
dad0ng发布了新的文献求助10
1分钟前
1分钟前
小二郎应助dad0ng采纳,获得10
1分钟前
南风南下完成签到 ,获得积分10
1分钟前
Yu发布了新的文献求助10
1分钟前
zyyyy发布了新的文献求助10
1分钟前
1分钟前
jami-yu发布了新的文献求助10
1分钟前
jewel9完成签到,获得积分10
1分钟前
在水一方应助Yu采纳,获得10
1分钟前
明天一定早睡关注了科研通微信公众号
1分钟前
1分钟前
研友_LaOyQZ完成签到,获得积分10
1分钟前
A_123应助坦率的尔冬采纳,获得10
1分钟前
jami-yu完成签到,获得积分10
2分钟前
坦率的尔冬完成签到,获得积分10
2分钟前
万能图书馆应助哈哈哈采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763871
求助须知:如何正确求助?哪些是违规求助? 5545305
关于积分的说明 15405600
捐赠科研通 4899419
什么是DOI,文献DOI怎么找? 2635548
邀请新用户注册赠送积分活动 1583722
关于科研通互助平台的介绍 1538812