Effects of DHA-enriched fish oil on gene expression levels of p53 and NF-κB and PPAR-γ activity in PBMCs of patients with T2DM: A randomized, double-blind, clinical trial
Background and Aims Omega-3 polyunsaturated fatty acids (PUFAs) are natural peroxisome proliferator-activated receptor gamma (PPAR-γ) ligands. Activated PPAR-γ protects the cardiovascular system against atherosclerotic lesion formation and exerts its anti-inflammatory role by suppressing cytokines induced by nuclear factor kappa-B (NF-κB) in endothelial cells (ECs), and it is hypothesized that apoptosis and cell cycle arrest induced by PPAR-γ ligands may be mediated by the p53-dependent pathway. The aim of our study was to investigate the effects of docosahexaenoic acid (DHA)-enriched fish oil supplement on PPAR-γ activity and mRNA expression levels of p53 and NF-κB. Methods and Results Fifty patients with type 2 diabetes mellitus (T2DM) aged 30–70 years were randomly assigned to receive either 2400 mg/d DHA-rich fish oil or placebo for 8 weeks. Metabolic parameters were assessed at baseline and at the end of the intervention. PPAR-γ activity in the peripheral blood mononuclear cells (PBMCs) was measured using ELISA-based PPAR-γ Transcription Factor Assay Kit, and the gene expression levels of p53 and NF-κB were assessed using real-time quantitative reverse transcription polymerase chain reaction (RT-PCR). On the basis of our finding, 8 weeks of treatment with DHA-rich fish oil increased PPAR-γ activity in PBMCs of subjects with T2DM (p < 0.01) compared to that in placebo (p = 0.4). Between-group comparisons of mean PPAR-γ activity changes showed significant differences (p = 0.03), whereas mRNA expression levels of the p53 and NF-κB genes did not show significant differences between studied groups (p = 0.2 and p = 0.5, respectively). Conclusion Our findings indicated that short-term DHA-rich fish oil supplementation may modulate PPAR-γ activity in PBMCs.