Gaussian weighted block sparse Bayesian learning strategy based on K-means clustering algorithm for accurate bioluminescence tomography in glioma

聚类分析 算法 计算机科学 高斯分布 稳健性(进化) 先验概率 贝叶斯概率 先验与后验 人工智能 贝叶斯推理 模式识别(心理学) 化学 哲学 物理 认识论 基因 量子力学 生物化学
作者
Lin Yin,Kun Wang,Jie Tian
标识
DOI:10.1117/12.2581307
摘要

As a preclinical imaging modality, bioluminescence tomography (BLT) is designed to locate and quantify threedimensional (3D) information of viable tumor cells in a living organism non-invasively. However, because of the ill-posedness of the inverse problem of reconstruction, BLT is hard to achieve the accurate recovery of the distribution of light sources. In this study, we proposed a Gaussian weighted block sparse Bayesian learning strategy based on K-means clustering algorithm (GBSBLK) for accurate BLT reconstruction. GBSBLK integrated the structured sparsity assumption, the K-means clustering strategy, and the block sparse Bayesian learning (BSBL) framework to overcome the over-smoothness and over-sparsity in BLT reconstructions, and without using the tumor segmentation from anatomical images as a priori. To better define the structured sparsity, we used the K-means clustering algorithm to directly cluster all the mesh points to get the K blocks. Furthermore, to prevent from over-smoothness of the light source, we applied Gaussian weighted distance prior to build the intra-block correlation matrix. At last, we used the BSBL framework to ensure the accuracy and robustness of the backward iterative computation. Results of both numerical simulations and in vivo experiments demonstrated that GBSBLK achieved the accurate quantitative analysis not only in tumor spatial positioning but also morphology recovery. We believe that GBSBLK can achieve great benefit in the application of BLT for quantitative analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡的绿柳完成签到,获得积分10
1秒前
万叶发布了新的文献求助10
3秒前
haofan17完成签到,获得积分0
3秒前
YY发布了新的文献求助30
3秒前
Shaynin完成签到,获得积分10
4秒前
充电宝应助fanli采纳,获得10
4秒前
XXXX完成签到,获得积分10
5秒前
发顶刊完成签到,获得积分10
5秒前
小二郎应助少年弦采纳,获得10
5秒前
weiyu发布了新的文献求助10
6秒前
wangbq完成签到 ,获得积分10
6秒前
7秒前
Swim完成签到,获得积分20
8秒前
丘比特应助邵晓啸采纳,获得20
10秒前
科研通AI2S应助发顶刊采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
好运来应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得10
11秒前
知许解夏应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
李爱国应助科研通管家采纳,获得30
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
12秒前
lee发布了新的文献求助10
13秒前
leodu完成签到,获得积分10
15秒前
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966370
求助须知:如何正确求助?哪些是违规求助? 3511789
关于积分的说明 11159900
捐赠科研通 3246400
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388