油页岩
润湿
接触角
渗吸
石油工程
地质学
卤水
矿物学
材料科学
复合材料
化学
植物
生物
发芽
古生物学
有机化学
作者
Muhammad Arif,Yihuai Zhang,Stefan Iglauer
出处
期刊:Energy & Fuels
[American Chemical Society]
日期:2021-02-02
卷期号:35 (4): 2965-2980
被引量:98
标识
DOI:10.1021/acs.energyfuels.0c04120
摘要
The wetting characteristics of shale rocks at representative subsurface conditions remain an area of active debate. A precise characterization of shale wettability is essential for enhanced oil and gas recovery, containment security during CO2 geo-storage, and flow back efficiency during hydraulic fracturing. While several methods were utilized in the literature to evaluate shale wettability (e.g., contact angle measurements, spontaneous imbibition method ,and NMR method), we here review the recently published data sets on shale contact angle measurements. The objectives of this review are to (a) develop a repository of the recent shale wettability data sets using contact angle measurements at high pressure and temperature (HPHT) conditions, (b) explore the factors influencing shale wettability, (c) identify potential limitations associated with contact angle methods, and (d) provide a research outlook for this area. On the basis of the data reviewed here, we conclude the following: (1) Shale/oil/brine systems demonstrate water-wet to strongly oil-wet wetting behaviors. (2) Shale/CO2/brine systems are usually weakly water-wet to CO2-wet. (3) Shale/CH4/brine systems are weakly water-wet. The key contributing factors that underpin this high shale wettability variability include, but are not limited to, operating pressure and temperature conditions, total organic content (TOC), mineral matter, and thermal maturity conditions. Thus, this review provides a succinct analysis of the shale wettability contact angle data sets and affords an overview of the current state of the art technology and possible future developments in this area to enhance the understanding of shale wettability.
科研通智能强力驱动
Strongly Powered by AbleSci AI