已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CG-Net: Conditional GIS-Aware Network for Individual Building Segmentation in VHR SAR Images

计算机科学 合成孔径雷达 足迹 基本事实 分割 人工智能 图像分割 遥感 计算机视觉 比例(比率) 地理信息系统 数据挖掘 地理 地图学 考古
作者
Yeneng Sun,Yuansheng Hua,Lichao Mou,Xiao Xiang Zhu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:29
标识
DOI:10.1109/tgrs.2020.3043089
摘要

Object retrieval and reconstruction from very-high-resolution (VHR) synthetic aperture radar (SAR) images are of great importance for urban SAR applications, yet highly challenging due to the complexity of SAR data. This article addresses the issue of individual building segmentation from a single VHR SAR image in large-scale urban areas. To achieve this, we introduce building footprints from geographic information system (GIS) data as a complementary information and propose a novel conditional GIS-aware network (CG-Net). The proposed model learns multilevel visual features and employs building footprints to normalize the features for predicting building masks in the SAR image. We validate our method using a high-resolution spotlight TerraSAR-X image collected over Berlin. Experimental results show that the proposed CG-Net effectively brings improvements with variant backbones. We further compare two representations of building footprints, namely, complete building footprints and sensor-visible footprint segments, for our task, and conclude that the use of the former leads to better segmentation results. Moreover, we investigate the impact of inaccurate GIS data on our CG-Net, and this study shows that CG-Net is robust against positioning errors in the GIS data. In addition, we propose an approach of ground truth generation of buildings from an accurate digital elevation model (DEM), which can be used to generate large-scale SAR image data sets. The segmentation results can be applied to reconstruct 3-D building models at level-of-detail (LoD) 1, which is demonstrated in our experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一筐猪发布了新的文献求助10
刚刚
by发布了新的文献求助10
3秒前
4秒前
hbx123关注了科研通微信公众号
4秒前
histamin完成签到,获得积分10
5秒前
adam完成签到 ,获得积分10
6秒前
万能图书馆应助晚风采纳,获得10
6秒前
6秒前
医研完成签到 ,获得积分10
7秒前
伶俐惜萱发布了新的文献求助10
8秒前
jcx发布了新的文献求助10
9秒前
FashionBoy应助开朗满天采纳,获得10
9秒前
111发布了新的文献求助10
10秒前
小章鱼完成签到 ,获得积分10
11秒前
14秒前
mellow完成签到,获得积分10
14秒前
华仔应助claire采纳,获得10
15秒前
科研通AI6应助伶俐惜萱采纳,获得10
16秒前
19秒前
晚风发布了新的文献求助10
19秒前
开朗满天完成签到,获得积分10
19秒前
gxmu6322完成签到,获得积分10
20秒前
moiumuio完成签到,获得积分10
22秒前
24秒前
15987342672完成签到 ,获得积分10
24秒前
hbx123发布了新的文献求助10
25秒前
Lifel完成签到 ,获得积分10
25秒前
Jiang完成签到,获得积分20
27秒前
雪儿完成签到 ,获得积分10
28秒前
Suttier完成签到 ,获得积分10
28秒前
研友_n0QYAZ完成签到 ,获得积分10
29秒前
张章发布了新的文献求助10
30秒前
追寻夜香完成签到 ,获得积分10
31秒前
ding应助科研通管家采纳,获得10
31秒前
传奇3应助科研通管家采纳,获得10
31秒前
NexusExplorer应助科研通管家采纳,获得10
32秒前
Kypsi完成签到,获得积分10
32秒前
Hello应助科研通管家采纳,获得10
32秒前
优美的梦玉完成签到,获得积分10
33秒前
科研通AI6应助by采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469870
求助须知:如何正确求助?哪些是违规求助? 4572878
关于积分的说明 14337487
捐赠科研通 4499774
什么是DOI,文献DOI怎么找? 2465296
邀请新用户注册赠送积分活动 1453726
关于科研通互助平台的介绍 1428259