CG-Net: Conditional GIS-Aware Network for Individual Building Segmentation in VHR SAR Images

计算机科学 合成孔径雷达 足迹 基本事实 分割 人工智能 图像分割 遥感 计算机视觉 比例(比率) 地理信息系统 数据挖掘 地理 地图学 考古
作者
Yeneng Sun,Yuansheng Hua,Lichao Mou,Xiao Xiang Zhu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:29
标识
DOI:10.1109/tgrs.2020.3043089
摘要

Object retrieval and reconstruction from very-high-resolution (VHR) synthetic aperture radar (SAR) images are of great importance for urban SAR applications, yet highly challenging due to the complexity of SAR data. This article addresses the issue of individual building segmentation from a single VHR SAR image in large-scale urban areas. To achieve this, we introduce building footprints from geographic information system (GIS) data as a complementary information and propose a novel conditional GIS-aware network (CG-Net). The proposed model learns multilevel visual features and employs building footprints to normalize the features for predicting building masks in the SAR image. We validate our method using a high-resolution spotlight TerraSAR-X image collected over Berlin. Experimental results show that the proposed CG-Net effectively brings improvements with variant backbones. We further compare two representations of building footprints, namely, complete building footprints and sensor-visible footprint segments, for our task, and conclude that the use of the former leads to better segmentation results. Moreover, we investigate the impact of inaccurate GIS data on our CG-Net, and this study shows that CG-Net is robust against positioning errors in the GIS data. In addition, we propose an approach of ground truth generation of buildings from an accurate digital elevation model (DEM), which can be used to generate large-scale SAR image data sets. The segmentation results can be applied to reconstruct 3-D building models at level-of-detail (LoD) 1, which is demonstrated in our experiments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
于林渤发布了新的文献求助10
刚刚
今后应助蓝柚采纳,获得10
1秒前
1秒前
xii发布了新的文献求助10
1秒前
无情威完成签到,获得积分20
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
SciGPT应助lxaiczn采纳,获得10
3秒前
不安的半梦完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
大模型应助ZJH采纳,获得10
5秒前
5秒前
6秒前
6秒前
充电宝应助落后的静曼采纳,获得10
6秒前
今后应助王可乐采纳,获得10
6秒前
重要的致远完成签到,获得积分10
7秒前
愉快道之发布了新的文献求助10
7秒前
一尘不染完成签到,获得积分10
8秒前
爆米花应助彩色的傲晴采纳,获得10
8秒前
希望天下0贩的0应助luyang采纳,获得10
8秒前
8秒前
9秒前
yiyi发布了新的文献求助10
9秒前
悦悦发布了新的文献求助10
9秒前
Cloud发布了新的文献求助10
9秒前
zhan47发布了新的文献求助10
9秒前
刘威发布了新的文献求助10
10秒前
科目三应助心灵美的蜻蜓采纳,获得30
10秒前
10秒前
apk866完成签到 ,获得积分10
10秒前
NexusExplorer应助www采纳,获得30
11秒前
HLS发布了新的文献求助10
11秒前
大模型应助明亮谷波采纳,获得10
11秒前
蜂蜜发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759795
求助须知:如何正确求助?哪些是违规求助? 5522143
关于积分的说明 15395458
捐赠科研通 4896764
什么是DOI,文献DOI怎么找? 2633888
邀请新用户注册赠送积分活动 1581947
关于科研通互助平台的介绍 1537419