CG-Net: Conditional GIS-Aware Network for Individual Building Segmentation in VHR SAR Images

计算机科学 合成孔径雷达 足迹 基本事实 分割 人工智能 图像分割 遥感 计算机视觉 比例(比率) 地理信息系统 数据挖掘 地理 地图学 考古
作者
Yeneng Sun,Yuansheng Hua,Lichao Mou,Xiao Xiang Zhu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:29
标识
DOI:10.1109/tgrs.2020.3043089
摘要

Object retrieval and reconstruction from very-high-resolution (VHR) synthetic aperture radar (SAR) images are of great importance for urban SAR applications, yet highly challenging due to the complexity of SAR data. This article addresses the issue of individual building segmentation from a single VHR SAR image in large-scale urban areas. To achieve this, we introduce building footprints from geographic information system (GIS) data as a complementary information and propose a novel conditional GIS-aware network (CG-Net). The proposed model learns multilevel visual features and employs building footprints to normalize the features for predicting building masks in the SAR image. We validate our method using a high-resolution spotlight TerraSAR-X image collected over Berlin. Experimental results show that the proposed CG-Net effectively brings improvements with variant backbones. We further compare two representations of building footprints, namely, complete building footprints and sensor-visible footprint segments, for our task, and conclude that the use of the former leads to better segmentation results. Moreover, we investigate the impact of inaccurate GIS data on our CG-Net, and this study shows that CG-Net is robust against positioning errors in the GIS data. In addition, we propose an approach of ground truth generation of buildings from an accurate digital elevation model (DEM), which can be used to generate large-scale SAR image data sets. The segmentation results can be applied to reconstruct 3-D building models at level-of-detail (LoD) 1, which is demonstrated in our experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简忆发布了新的文献求助10
刚刚
没有保护色的枯叶蝶完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
俭朴夜香完成签到,获得积分10
2秒前
2秒前
2秒前
隐形曼青应助无昵称采纳,获得10
2秒前
终会遇见她呦完成签到,获得积分10
4秒前
4秒前
顺利的若灵完成签到,获得积分10
5秒前
Alioth完成签到,获得积分10
5秒前
ZZZ做实验发布了新的文献求助10
5秒前
小二郎应助飞飞采纳,获得10
5秒前
星星发布了新的文献求助30
6秒前
赘婿应助ppboyindream采纳,获得10
7秒前
lookahead发布了新的文献求助10
7秒前
7秒前
林深时见鹿完成签到,获得积分10
8秒前
8秒前
一个兴趣使然的人完成签到,获得积分10
9秒前
9秒前
加美希尔完成签到,获得积分10
9秒前
耳机单蹦发布了新的文献求助10
9秒前
9秒前
咕噜咕噜发布了新的文献求助10
9秒前
10秒前
行7发布了新的文献求助10
10秒前
Gauss应助fyl采纳,获得30
10秒前
啊阿阿阿沐完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
11秒前
张豪杰发布了新的文献求助10
12秒前
闻元杰完成签到,获得积分10
12秒前
LISHAN驳回了Arlene应助
12秒前
钩子89完成签到,获得积分10
13秒前
李健应助lili采纳,获得20
13秒前
孙琪发布了新的文献求助10
14秒前
耳机单蹦完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969335
求助须知:如何正确求助?哪些是违规求助? 3514162
关于积分的说明 11172430
捐赠科研通 3249456
什么是DOI,文献DOI怎么找? 1794853
邀请新用户注册赠送积分活动 875437
科研通“疑难数据库(出版商)”最低求助积分说明 804809