CG-Net: Conditional GIS-Aware Network for Individual Building Segmentation in VHR SAR Images

计算机科学 合成孔径雷达 足迹 基本事实 分割 人工智能 图像分割 遥感 计算机视觉 比例(比率) 地理信息系统 数据挖掘 地理 地图学 考古
作者
Yeneng Sun,Yuansheng Hua,Lichao Mou,Xiao Xiang Zhu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:29
标识
DOI:10.1109/tgrs.2020.3043089
摘要

Object retrieval and reconstruction from very-high-resolution (VHR) synthetic aperture radar (SAR) images are of great importance for urban SAR applications, yet highly challenging due to the complexity of SAR data. This article addresses the issue of individual building segmentation from a single VHR SAR image in large-scale urban areas. To achieve this, we introduce building footprints from geographic information system (GIS) data as a complementary information and propose a novel conditional GIS-aware network (CG-Net). The proposed model learns multilevel visual features and employs building footprints to normalize the features for predicting building masks in the SAR image. We validate our method using a high-resolution spotlight TerraSAR-X image collected over Berlin. Experimental results show that the proposed CG-Net effectively brings improvements with variant backbones. We further compare two representations of building footprints, namely, complete building footprints and sensor-visible footprint segments, for our task, and conclude that the use of the former leads to better segmentation results. Moreover, we investigate the impact of inaccurate GIS data on our CG-Net, and this study shows that CG-Net is robust against positioning errors in the GIS data. In addition, we propose an approach of ground truth generation of buildings from an accurate digital elevation model (DEM), which can be used to generate large-scale SAR image data sets. The segmentation results can be applied to reconstruct 3-D building models at level-of-detail (LoD) 1, which is demonstrated in our experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默听芹完成签到,获得积分10
刚刚
1秒前
丹yeah发布了新的文献求助10
1秒前
2秒前
今后应助科研通管家采纳,获得10
4秒前
嗯哼应助科研通管家采纳,获得20
4秒前
852应助科研通管家采纳,获得10
4秒前
4秒前
Owen应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
大有阳光应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
HEIKU应助科研通管家采纳,获得10
4秒前
Singularity应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得30
5秒前
iNk应助科研通管家采纳,获得10
5秒前
BOSS徐应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
梓泽丘墟应助科研通管家采纳,获得20
5秒前
5秒前
5秒前
ting完成签到,获得积分10
6秒前
justsoso完成签到,获得积分10
6秒前
丝丝完成签到,获得积分20
7秒前
KEyanba完成签到,获得积分10
7秒前
愉快的宛儿完成签到,获得积分20
7秒前
8秒前
Duolalala完成签到 ,获得积分10
8秒前
火龙果完成签到,获得积分10
9秒前
有足量NaCl完成签到 ,获得积分10
10秒前
qhy完成签到,获得积分10
12秒前
12秒前
12秒前
淡然善斓完成签到,获得积分10
13秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162567
求助须知:如何正确求助?哪些是违规求助? 2813460
关于积分的说明 7900578
捐赠科研通 2473036
什么是DOI,文献DOI怎么找? 1316641
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175