CG-Net: Conditional GIS-Aware Network for Individual Building Segmentation in VHR SAR Images

计算机科学 合成孔径雷达 足迹 基本事实 分割 人工智能 图像分割 遥感 计算机视觉 比例(比率) 地理信息系统 数据挖掘 地理 地图学 考古
作者
Yeneng Sun,Yuansheng Hua,Lichao Mou,Xiao Xiang Zhu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:29
标识
DOI:10.1109/tgrs.2020.3043089
摘要

Object retrieval and reconstruction from very-high-resolution (VHR) synthetic aperture radar (SAR) images are of great importance for urban SAR applications, yet highly challenging due to the complexity of SAR data. This article addresses the issue of individual building segmentation from a single VHR SAR image in large-scale urban areas. To achieve this, we introduce building footprints from geographic information system (GIS) data as a complementary information and propose a novel conditional GIS-aware network (CG-Net). The proposed model learns multilevel visual features and employs building footprints to normalize the features for predicting building masks in the SAR image. We validate our method using a high-resolution spotlight TerraSAR-X image collected over Berlin. Experimental results show that the proposed CG-Net effectively brings improvements with variant backbones. We further compare two representations of building footprints, namely, complete building footprints and sensor-visible footprint segments, for our task, and conclude that the use of the former leads to better segmentation results. Moreover, we investigate the impact of inaccurate GIS data on our CG-Net, and this study shows that CG-Net is robust against positioning errors in the GIS data. In addition, we propose an approach of ground truth generation of buildings from an accurate digital elevation model (DEM), which can be used to generate large-scale SAR image data sets. The segmentation results can be applied to reconstruct 3-D building models at level-of-detail (LoD) 1, which is demonstrated in our experiments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助火星上香菇采纳,获得10
刚刚
徐伟发布了新的文献求助10
刚刚
FashionBoy应助fhl采纳,获得10
刚刚
无极微光应助微风采纳,获得20
刚刚
Antares完成签到 ,获得积分10
刚刚
给我一篇文献吧完成签到 ,获得积分10
1秒前
Tsuki完成签到 ,获得积分10
1秒前
1秒前
1秒前
科目三应助114555采纳,获得10
1秒前
小青椒应助星星采纳,获得50
2秒前
2秒前
科研通AI6应助迷路的寄风采纳,获得10
2秒前
长言发布了新的文献求助10
3秒前
橙汁完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
加油完成签到 ,获得积分10
5秒前
幼稚园扛把子完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
科研通AI6应助唐胜利采纳,获得10
6秒前
孤独的芒果完成签到,获得积分10
7秒前
小幸运完成签到,获得积分10
7秒前
7秒前
河里蹿完成签到,获得积分10
8秒前
关关过应助xin采纳,获得20
8秒前
8秒前
8秒前
9秒前
9秒前
liu完成签到,获得积分20
10秒前
10秒前
皮在痒完成签到,获得积分10
11秒前
11秒前
11秒前
cxm发布了新的文献求助10
11秒前
派总派总大星完成签到,获得积分10
11秒前
Akim应助权_888采纳,获得10
11秒前
qwe关闭了qwe文献求助
12秒前
xing完成签到,获得积分10
12秒前
蜗牛发布了新的文献求助20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659704
求助须知:如何正确求助?哪些是违规求助? 4829909
关于积分的说明 15088114
捐赠科研通 4818433
什么是DOI,文献DOI怎么找? 2578625
邀请新用户注册赠送积分活动 1533233
关于科研通互助平台的介绍 1491959