CG-Net: Conditional GIS-Aware Network for Individual Building Segmentation in VHR SAR Images

计算机科学 合成孔径雷达 足迹 基本事实 分割 人工智能 图像分割 遥感 计算机视觉 比例(比率) 地理信息系统 数据挖掘 地理 地图学 考古
作者
Yeneng Sun,Yuansheng Hua,Lichao Mou,Xiao Xiang Zhu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:29
标识
DOI:10.1109/tgrs.2020.3043089
摘要

Object retrieval and reconstruction from very-high-resolution (VHR) synthetic aperture radar (SAR) images are of great importance for urban SAR applications, yet highly challenging due to the complexity of SAR data. This article addresses the issue of individual building segmentation from a single VHR SAR image in large-scale urban areas. To achieve this, we introduce building footprints from geographic information system (GIS) data as a complementary information and propose a novel conditional GIS-aware network (CG-Net). The proposed model learns multilevel visual features and employs building footprints to normalize the features for predicting building masks in the SAR image. We validate our method using a high-resolution spotlight TerraSAR-X image collected over Berlin. Experimental results show that the proposed CG-Net effectively brings improvements with variant backbones. We further compare two representations of building footprints, namely, complete building footprints and sensor-visible footprint segments, for our task, and conclude that the use of the former leads to better segmentation results. Moreover, we investigate the impact of inaccurate GIS data on our CG-Net, and this study shows that CG-Net is robust against positioning errors in the GIS data. In addition, we propose an approach of ground truth generation of buildings from an accurate digital elevation model (DEM), which can be used to generate large-scale SAR image data sets. The segmentation results can be applied to reconstruct 3-D building models at level-of-detail (LoD) 1, which is demonstrated in our experiments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sakana发布了新的文献求助10
1秒前
坚强的纸飞机完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
NorthWang完成签到,获得积分0
2秒前
wanci应助PEGA采纳,获得10
3秒前
玛卡巴卡发布了新的文献求助10
3秒前
Lucas应助TWEETY采纳,获得10
3秒前
3秒前
念安完成签到,获得积分10
5秒前
小五屁孩儿完成签到,获得积分10
5秒前
12345发布了新的文献求助10
6秒前
果蝇之母完成签到 ,获得积分10
6秒前
6秒前
Joyce完成签到,获得积分10
7秒前
KGGG完成签到,获得积分10
7秒前
坚强怀绿发布了新的文献求助10
7秒前
西西完成签到,获得积分10
7秒前
伶俐幻莲完成签到,获得积分10
7秒前
7秒前
spring发布了新的文献求助10
8秒前
鱼儿会飞完成签到,获得积分10
8秒前
9秒前
9秒前
向日葵完成签到,获得积分10
9秒前
Zhou发布了新的文献求助10
10秒前
猫好好完成签到,获得积分10
10秒前
10秒前
江城完成签到,获得积分10
11秒前
11秒前
TGU完成签到,获得积分10
11秒前
默默月光发布了新的文献求助10
11秒前
ping发布了新的文献求助10
12秒前
871624521完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
星辰大海应助舒心的雍采纳,获得10
13秒前
13秒前
Ly发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5765527
求助须知:如何正确求助?哪些是违规求助? 5561576
关于积分的说明 15409288
捐赠科研通 4900231
什么是DOI,文献DOI怎么找? 2636244
邀请新用户注册赠送积分活动 1584487
关于科研通互助平台的介绍 1539736