Individual species provide multifaceted contributions to the stability of ecosystems

生态学 生态稳定性 生态系统 背景(考古学) 消光(光学矿物学) 理论(学习稳定性) 生物量(生态学) 生物 可预测性 计算机科学 数学 统计 机器学习 古生物学
作者
Lydia White,Nessa E. O’Connor,Qiang Yang,Mark Emmerson,Ian Donohue
出处
期刊:Nature Ecology and Evolution [Springer Nature]
卷期号:4 (12): 1594-1601 被引量:57
标识
DOI:10.1038/s41559-020-01315-w
摘要

Exploration of the relationship between species diversity and ecological stability has occupied a prominent place in ecological research for decades. Yet, a key component of this puzzle—the contributions of individual species to the overall stability of ecosystems—remains largely unknown. Here, we show that individual species simultaneously stabilize and destabilize ecosystems along different dimensions of stability, and also that their contributions to functional (biomass) and compositional stability are largely independent. By simulating experimentally the extinction of three consumer species (the limpet Patella, the periwinkle Littorina and the topshell Gibbula) from a coastal rocky shore, we found that the capacity to predict the combined contribution of species to stability from the sum of their individual contributions varied among stability dimensions. This implies that the nature of the diversity–stability relationship depends upon the dimension of stability under consideration, and may be additive, synergistic or antagonistic. We conclude that, although the profoundly multifaceted and context-dependent consequences of species loss pose a significant challenge, the predictability of cumulative species contributions to some dimensions of stability provide a way forward for ecologists trying to conserve ecosystems and manage their stability under global change. By simulating experimentally the extinction of three key grazer species from an intertidal community, the authors show that the contribution of individual species to different dimensions of ecological stability is highly context dependent, and may simultaneously be positive or negative.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
孙畅完成签到 ,获得积分10
1秒前
陈龙发布了新的文献求助10
1秒前
阔达芾发布了新的文献求助20
1秒前
沉静道罡完成签到,获得积分10
3秒前
5秒前
5秒前
xuxuwang1发布了新的文献求助10
5秒前
6秒前
斯文败类应助sunoopp采纳,获得10
9秒前
9秒前
10秒前
10秒前
善学以致用应助小王子采纳,获得10
10秒前
yznfly应助科研通管家采纳,获得20
10秒前
yznfly应助科研通管家采纳,获得20
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
10秒前
11秒前
英姑应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
yznfly应助科研通管家采纳,获得50
11秒前
yznfly应助科研通管家采纳,获得50
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
11秒前
orixero应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
LINHY应助科研通管家采纳,获得30
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737686
求助须知:如何正确求助?哪些是违规求助? 5373939
关于积分的说明 15336077
捐赠科研通 4881050
什么是DOI,文献DOI怎么找? 2623314
邀请新用户注册赠送积分活动 1572041
关于科研通互助平台的介绍 1528887