Printed Thin Lithium Foil with Flexible Thickness and Width for Industrial Battery Applications

材料科学 阳极 锂(药物) 箔法 电池(电) 电解质 锂电池 易燃液体 复合材料 离子 化学 废物管理 电极 工程类 功率(物理) 医学 物理 内分泌学 物理化学 有机化学 量子力学 离子键合
作者
Jian Xia,Brian Fitch,Andrew Watson,Emory Cabaniss,Rebecca Black,Marina Yakovleva
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (5): 976-976 被引量:4
标识
DOI:10.1149/ma2020-025976mtgabs
摘要

Lithium metal anodes are attractive for next generation battery technologies due to their high capacity, low voltage potential and light weight. 1 The state of the art lithium-ion battery cells have energy density of ~300 Wh/kg. The lithium metal anode has already been used in rechargeable batteries with liquid electrolyte and demonstrated record specific energy density of more than 400 Wh/kg. 2 , 3 Solid-state batteries use non-flammable solid electrolytes instead of liquid and therefore offer improved safety. However, solid state batteries can exceed the energy density of today's lithium-ion batteries only when the thin lithium metal foil is used as an anode. The common process to produce thin lithium foils includes extrusion followed by a rolling process. Typically, extruded lithium foil has a thickness of 100 μm or higher and is often made from lithium aluminum or other alloys to improve its mechanical strength. There are inherent difficulties of making extruded and rolled thin lithium metal films with thickness less 50 μm; for example, the control of thickness uniformity over long lengths and impurity levels. 4 Moreover, the cost of making these foils increases as the thickness decreases. Thus, thin lithium foils with thickness less than 50 μm haven’t been produced on an industrial scale with the quality requirements necessary for battery applications. Livent Corporation, formerly FMC Lithium, is one of the top lithium producers in the world and has over 60 years of extensive experience in providing high quality materials to the lithium-ion battery industry. Livent has recent developed Printable Lithium Technology (PLT), which incorporates stabilized lithium metal powder (SLMP ® ) into a stable printable formulation. PLT enables printing on any substrate, for example a current collector, prefabricated anode or cathode, separator, and even on solid or polymer electrolytes. The thickness of printed lithium foil is mainly controlled by the particle size of SLMP. The technology is easily scalable using industry standard coating and printing equipment. PLT is flexible, battery chemistry agnostic and adaptable to any energy storage device where thin lithium anodes are used. Figure 1A shows an image comparing the 50 μm commercially available lithium foil (left) and 20 μm printed lithium foil (right) on a copper current collector. Figure 1A shows that a uniform film made from printable lithium formulation is consistent across the entire 50cm×10cm area. Figure 1B and figure 1C are the optical microscope images of 50 μm commercially available lithium foil and 20 μm printed lithium foil, respectively. Figure 1C shows that printed lithium foil maintains particulate structure of SLMP precursor that potentially can distribute current density over a wider surface area. The thin foil made with printable lithium formulation (PLF) contains rheology and performance modifiers that serve as a 3D skeleton, which can change the lithium surface plating behavior; therefore, mitigating the growth of dendritic lithium and mechanical degradation; thus, improving safety and cycle life of the battery. Figure 1D compares lithium plating and stripping properties conducted in a symmetric pouch cell with a current collector coated with 20 um printed lithium foil vs. 50 um commercially available lithium foil. The symmetric cell contains two Li/Cu electrodes with Celgard 3501 separator sandwiched in between. Figure 2 shows that cell containing the printed lithium foil, and in spite of its lower thickness, has exceptional cycling stability with negligible potential increases during the first 70 cycles, indicating that the growth of dendritic lithium has been significantly mitigated. Fgiure captions: Figure 1A. Image of 50 μm commercially available lithium foil (left) and 20 μm printed lithium foil (right) on a copper current collector. Figure 1B . Microscope image of 50 μm commercially available lithium foil. Figure 1C . Microscope image of 20 μm printed lithium foil . Figure 1D Lithium plating and stripping properties tested in a pouch cell with a copper current collector coated with 20 μm printed lithium foil versus 50 μm commercially available lithium foil. Cycling voltage is between -0.5V and 0.5 V and a current density is 0.5 C for 1h. References D. Lin, Y. Liu, and Y. Cui, Nature Nanotechnology , 12 , 194–206 (2017) http://dx.doi.org/10.1038/nnano.2017.16. J. Liu et al., Nature Energy , 4 , 180–186 (2019). Q, Hu, Y. Matulevich and Y, Tang , Solidenergy Systems, US Patent No. 16/308,023, June 08 th , 2016. O. Mashtalir, M. Nguyen, E. Bodoin, L. Swonger, and S. P. O’Brien, ACS Omega, 3, 181–187 (2018). Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张贤迪发布了新的文献求助10
1秒前
1秒前
000发布了新的文献求助10
2秒前
慕青应助顺利秋灵采纳,获得10
2秒前
孙福禄应助bbz采纳,获得10
2秒前
啦啦咔嘞完成签到,获得积分10
3秒前
知性的千秋完成签到,获得积分10
5秒前
甄世凡发布了新的文献求助10
6秒前
桐桐应助墨卿采纳,获得10
6秒前
康复小白完成签到 ,获得积分10
8秒前
8秒前
WoeL.Aug.11完成签到 ,获得积分10
8秒前
8秒前
9秒前
Rondab应助航迹云的彼方采纳,获得30
9秒前
茉莉完成签到,获得积分10
9秒前
11秒前
淡定从凝完成签到,获得积分10
12秒前
Oyster发布了新的文献求助10
13秒前
14秒前
WENc发布了新的文献求助10
14秒前
Helly发布了新的文献求助10
14秒前
LWJ发布了新的文献求助10
15秒前
小蘑菇发布了新的文献求助10
15秒前
15秒前
16秒前
文光完成签到,获得积分10
16秒前
16秒前
17秒前
19秒前
中和皇极发布了新的文献求助10
19秒前
寒径斜关注了科研通微信公众号
20秒前
20秒前
cheng完成签到,获得积分10
21秒前
pokexuejiao发布了新的文献求助20
21秒前
努力仔发布了新的文献求助10
23秒前
24秒前
lu完成签到,获得积分10
24秒前
000完成签到,获得积分20
25秒前
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992117
求助须知:如何正确求助?哪些是违规求助? 3533123
关于积分的说明 11261129
捐赠科研通 3272496
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882717
科研通“疑难数据库(出版商)”最低求助积分说明 809425