已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Printed Thin Lithium Foil with Flexible Thickness and Width for Industrial Battery Applications

材料科学 阳极 锂(药物) 箔法 电池(电) 电解质 锂电池 易燃液体 复合材料 离子 化学 废物管理 电极 工程类 功率(物理) 医学 物理 内分泌学 物理化学 有机化学 量子力学 离子键合
作者
Jian Xia,Brian Fitch,Andrew Watson,Emory Cabaniss,Rebecca Black,Marina Yakovleva
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (5): 976-976 被引量:4
标识
DOI:10.1149/ma2020-025976mtgabs
摘要

Lithium metal anodes are attractive for next generation battery technologies due to their high capacity, low voltage potential and light weight. 1 The state of the art lithium-ion battery cells have energy density of ~300 Wh/kg. The lithium metal anode has already been used in rechargeable batteries with liquid electrolyte and demonstrated record specific energy density of more than 400 Wh/kg. 2 , 3 Solid-state batteries use non-flammable solid electrolytes instead of liquid and therefore offer improved safety. However, solid state batteries can exceed the energy density of today's lithium-ion batteries only when the thin lithium metal foil is used as an anode. The common process to produce thin lithium foils includes extrusion followed by a rolling process. Typically, extruded lithium foil has a thickness of 100 μm or higher and is often made from lithium aluminum or other alloys to improve its mechanical strength. There are inherent difficulties of making extruded and rolled thin lithium metal films with thickness less 50 μm; for example, the control of thickness uniformity over long lengths and impurity levels. 4 Moreover, the cost of making these foils increases as the thickness decreases. Thus, thin lithium foils with thickness less than 50 μm haven’t been produced on an industrial scale with the quality requirements necessary for battery applications. Livent Corporation, formerly FMC Lithium, is one of the top lithium producers in the world and has over 60 years of extensive experience in providing high quality materials to the lithium-ion battery industry. Livent has recent developed Printable Lithium Technology (PLT), which incorporates stabilized lithium metal powder (SLMP ® ) into a stable printable formulation. PLT enables printing on any substrate, for example a current collector, prefabricated anode or cathode, separator, and even on solid or polymer electrolytes. The thickness of printed lithium foil is mainly controlled by the particle size of SLMP. The technology is easily scalable using industry standard coating and printing equipment. PLT is flexible, battery chemistry agnostic and adaptable to any energy storage device where thin lithium anodes are used. Figure 1A shows an image comparing the 50 μm commercially available lithium foil (left) and 20 μm printed lithium foil (right) on a copper current collector. Figure 1A shows that a uniform film made from printable lithium formulation is consistent across the entire 50cm×10cm area. Figure 1B and figure 1C are the optical microscope images of 50 μm commercially available lithium foil and 20 μm printed lithium foil, respectively. Figure 1C shows that printed lithium foil maintains particulate structure of SLMP precursor that potentially can distribute current density over a wider surface area. The thin foil made with printable lithium formulation (PLF) contains rheology and performance modifiers that serve as a 3D skeleton, which can change the lithium surface plating behavior; therefore, mitigating the growth of dendritic lithium and mechanical degradation; thus, improving safety and cycle life of the battery. Figure 1D compares lithium plating and stripping properties conducted in a symmetric pouch cell with a current collector coated with 20 um printed lithium foil vs. 50 um commercially available lithium foil. The symmetric cell contains two Li/Cu electrodes with Celgard 3501 separator sandwiched in between. Figure 2 shows that cell containing the printed lithium foil, and in spite of its lower thickness, has exceptional cycling stability with negligible potential increases during the first 70 cycles, indicating that the growth of dendritic lithium has been significantly mitigated. Fgiure captions: Figure 1A. Image of 50 μm commercially available lithium foil (left) and 20 μm printed lithium foil (right) on a copper current collector. Figure 1B . Microscope image of 50 μm commercially available lithium foil. Figure 1C . Microscope image of 20 μm printed lithium foil . Figure 1D Lithium plating and stripping properties tested in a pouch cell with a copper current collector coated with 20 μm printed lithium foil versus 50 μm commercially available lithium foil. Cycling voltage is between -0.5V and 0.5 V and a current density is 0.5 C for 1h. References D. Lin, Y. Liu, and Y. Cui, Nature Nanotechnology , 12 , 194–206 (2017) http://dx.doi.org/10.1038/nnano.2017.16. J. Liu et al., Nature Energy , 4 , 180–186 (2019). Q, Hu, Y. Matulevich and Y, Tang , Solidenergy Systems, US Patent No. 16/308,023, June 08 th , 2016. O. Mashtalir, M. Nguyen, E. Bodoin, L. Swonger, and S. P. O’Brien, ACS Omega, 3, 181–187 (2018). Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
土豆完成签到 ,获得积分10
1秒前
顺心的皮卡丘完成签到 ,获得积分10
3秒前
shuhaha完成签到,获得积分10
4秒前
晓晓来了完成签到,获得积分10
7秒前
lilili完成签到 ,获得积分10
7秒前
小蘑菇应助谦让碧菡采纳,获得10
8秒前
逍遥子0211完成签到,获得积分10
9秒前
丰富源智完成签到,获得积分10
10秒前
唐ZY123发布了新的文献求助10
13秒前
滴嘟滴嘟完成签到 ,获得积分10
14秒前
16秒前
怡然凌柏完成签到 ,获得积分10
17秒前
18秒前
周冯雪完成签到 ,获得积分10
18秒前
19秒前
阔达静曼完成签到 ,获得积分10
19秒前
20秒前
21秒前
诸星大发布了新的文献求助50
22秒前
2220完成签到 ,获得积分10
22秒前
NeuroYue发布了新的文献求助10
24秒前
yinshan完成签到 ,获得积分10
24秒前
帅帅发布了新的文献求助10
24秒前
维维发布了新的文献求助10
25秒前
科研通AI5应助唐ZY123采纳,获得10
26秒前
kikikiki完成签到,获得积分10
27秒前
elmacho完成签到 ,获得积分10
27秒前
dd完成签到,获得积分10
28秒前
卧镁铀钳完成签到 ,获得积分10
28秒前
科研通AI6应助发发采纳,获得10
28秒前
科研通AI6应助发发采纳,获得10
28秒前
29秒前
xiaolong给xiaolong的求助进行了留言
29秒前
Owen应助帅帅采纳,获得10
30秒前
科研通AI6应助NeuroYue采纳,获得10
31秒前
谦让碧菡发布了新的文献求助10
35秒前
小明应助PPD采纳,获得10
36秒前
40秒前
求知者1701应助诸星大采纳,获得50
43秒前
ccc完成签到,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610291
求助须知:如何正确求助?哪些是违规求助? 4016305
关于积分的说明 12434932
捐赠科研通 3697878
什么是DOI,文献DOI怎么找? 2039077
邀请新用户注册赠送积分活动 1071968
科研通“疑难数据库(出版商)”最低求助积分说明 955614