Band structure, ferroelectric instability, and spin–orbital coupling effect of bilayer α-In2Se3

凝聚态物理 材料科学 不稳定性 铁电性 基态 带隙 反铁电性 双层 电子能带结构 物理 化学 光电子学 量子力学 电介质 生物化学
作者
C. F. Li,Yongqiang Li,Yuying Tang,Shuhan Zheng,J. H. Zhang,Yang Zhang,Lin Lin,Z. B. Yan,Xiangping Jiang,Jun‐Ming Liu
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:128 (23) 被引量:16
标识
DOI:10.1063/5.0029646
摘要

Recently, two-dimensional van der Waals ferroelectrics have been receiving much interest with continuous exploration of the underlying physics and device applications. While α-In2Se3 in an atomically thin crystal form is believed to have nonzero out-of-plane polarization, its ferroelectric (FE) instability in competition with the antiferroelectric (AFE) ground state is highly concerned. Along this line, a bilayer α-In2Se3 structure should be a good object for clarifying this issue since it is the simplest 2D lattice accommodating an AFE state, possibly allowing the AFE–FE competition. In this work, we employ the first-principles calculation to investigate the lattice and electronic structures of bilayer α-In2Se3, and special attention is paid to the FE instability in competition with the AFE ground state. It is found that the energy difference between the AFE ground state and FE state is small, thereby allowing an electric field modulation of the AFE–FE inter-conversion. More importantly, the Hyed–Scuseria–Ernzerhof algorithm predicts that the FE state is indeed semiconducting rather than metallic, removing the inconsistency between experimental observation and theoretical prediction. The spin–orbital coupling effect can further enlarge the bandgap and drive the indirect-to-direct bandgap transition, and thus appears to be an important ingredient of the underlying physics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大火炉完成签到 ,获得积分20
刚刚
mindseye发布了新的文献求助10
刚刚
Persevere完成签到,获得积分10
刚刚
rongyiming发布了新的文献求助10
1秒前
巍峨发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
bkagyin应助俊逸的代曼采纳,获得10
2秒前
司马绮山发布了新的文献求助10
2秒前
打打应助xiaohuipan采纳,获得10
2秒前
缓慢妙芙发布了新的文献求助10
2秒前
无花果应助family采纳,获得10
2秒前
4秒前
逢馍巨侠完成签到,获得积分10
4秒前
刘某完成签到,获得积分10
4秒前
zcvxd完成签到,获得积分10
4秒前
jinfu应助zh1858f采纳,获得10
4秒前
聪慧的小伙完成签到 ,获得积分10
5秒前
5秒前
ID发布了新的文献求助10
5秒前
chenjie发布了新的文献求助10
5秒前
科研通AI6应助超帅的冷菱采纳,获得10
5秒前
六六发布了新的文献求助80
6秒前
游一完成签到,获得积分10
6秒前
滴滴滴完成签到,获得积分20
6秒前
zmx发布了新的文献求助10
7秒前
耙芋儿完成签到,获得积分10
7秒前
7秒前
7秒前
科研通AI6应助卢笙采纳,获得50
8秒前
Hello应助胖虎采纳,获得10
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
ZwB发布了新的文献求助10
9秒前
复杂尔蓝完成签到 ,获得积分10
9秒前
10秒前
10秒前
10秒前
ding应助舒适的语风采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653747
求助须知:如何正确求助?哪些是违规求助? 4790572
关于积分的说明 15066040
捐赠科研通 4812391
什么是DOI,文献DOI怎么找? 2574512
邀请新用户注册赠送积分活动 1530011
关于科研通互助平台的介绍 1488724