纳米片
纳米技术
单层
等离子体子
过渡金属
纳米颗粒
银纳米粒子
表面等离子共振
材料科学
化学气相沉积
混合材料
化学工程
光电子学
化学
催化作用
生物化学
工程类
作者
Qiuyan Yue,Lin Wang,Huacheng Fan,Ying Zhao,Cong Wei,Chengjie Pei,Qingsong Song,Xiao Huang,Hai Li
出处
期刊:Inorganic Chemistry
[American Chemical Society]
日期:2020-12-31
卷期号:60 (7): 4226-4235
被引量:21
标识
DOI:10.1021/acs.inorgchem.0c03235
摘要
The low light absorption of transition-metal dichalcogenide (TMDC) nanosheets hinders their application as high-performance optoelectronic devices. Rolling them up into one-dimensional (1D) nanoscrolls and decorating them with plasmonic nanoparticles (NPs) are both effective strategies for enhancing their performance. When these two approaches are combined, in this work, the light–matter interaction in TMDC nanosheets is greatly improved by encapsulating silver nanoparticles (Ag NPs) in TMDC nanoscrolls. After the silver nitrate (AgNO3) solution was spin-coated on monolayer (1L) MoS2 and WS2 nanosheets grown by chemical vapor deposition, Ag NPs were homogeneously formed to obtain MoS2-Ag and WS2-Ag nanosheets due to the TMDC-assisted spontaneous reduction, and their size and density can be well controlled by tuning the concentration of the AgNO3 solution. By the simple placement of alkaline droplets on MoS2-Ag or WS2-Ag hybrid nanosheets, MoS2-Ag or WS2-Ag nanoscrolls with large sizes were obtained in large area. The obtained hybrid nanoscrolls exhibited up to 500 times increased photosensitivities compared with 1L MoS2 nanosheets, arising from the localized surface plasmon resonance effect of Ag NPs and the scrolled-nanosheet structure. Our work provides a reliable method for the facile and large-area preparation of NP/nanosheet hybrid nanoscrolls and demonstrates their great potential for high-performance optoelectronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI