活动站点
密度泛函理论
化学物理
离解(化学)
催化作用
分解水
材料科学
物理
热力学
物理化学
计算化学
化学
生物化学
光催化
作者
Nawras Abidi,Audrey Bonduelle-Skrzypczak,Stephan N. Steinmann
标识
DOI:10.1021/acsami.0c06489
摘要
MoS2 is a promising low-cost catalyst for the hydrogen evolution reaction (HER). However, the nature of the active sites remains a subject of debate. By taking the electrochemcal potential explicitly into account using grand-canonical density functional theory (DFT) in combination with the linearized Poisson-Boltzmann equation, we herein revisit the active sites of 2H-MoS2. In addition to the well-known catalytically active edge sites, also specific point defects on the otherwise inert basal plane provide highly active sites for HER. Given that HER takes place in water, we also assess the reactivity of these active sites with respect to H2O. The thermodynamics of proton reduction as a function of the electrochemical potential reveals that four edge sites and three basal plane defects feature thermodynamic overpotentials below 0.2 V. In contrast to current proposals, many of these active sites involve adsorbed OH. The results demonstrate that even though H2O and OH block "active" sites, HER can also occur on these "blocked" sites, reducing protons on surface OH/H2O entities. As a consequence, our results revise the active sites, highlighting the so far overlooked need to take the liquid component (H2O) of the functional interface into account when considering the stability and activity of the various active sites.
科研通智能强力驱动
Strongly Powered by AbleSci AI