Sleep stage classification for child patients using DeConvolutional Neural Network

时间戳 计算机科学 多导睡眠图 人工智能 模式识别(心理学) 多元统计 下巴 睡眠(系统调用) 睡眠阶段 人工神经网络 机器学习 脑电图 医学 计算机安全 操作系统 精神科 解剖
作者
Xinyu Huang,Kimiaki Shirahama,Frédéric Li,Marcin Grzegorzek
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:110: 101981-101981 被引量:27
标识
DOI:10.1016/j.artmed.2020.101981
摘要

Studies from the literature show that the prevalence of sleep disorder in children is far higher than that in adults. Although much research effort has been made on sleep stage classification for adults, children have significantly different characteristics of sleep stages. Therefore, there is an urgent need for sleep stage classification targeting children in particular. Our method focuses on two issues: The first is timestamp-based segmentation (TSS) to deal with the fine-grained annotation of sleep stage labels for each timestamp. Compared to this, popular sliding window approaches unnecessarily aggregate such labels into coarse-grained ones. We utilize DeConvolutional Neural Network (DCNN) that inversely maps features of a hidden layer back to the input space to predict the sleep stage label at each timestamp. Thus, our DCNN can yield better classification performances by considering labels at numerous timestamps. The second issue is the necessity of multiple channels. Different clinical signs, symptoms or other auxiliary examinations could be represented by different Polysomnography (PSG) recordings, so all of them should be analyzed comprehensively. We therefor exploit multivariate time-series of PSG recordings, including 6 electroencephalograms (EEGs) channels, 2 electrooculograms (EOGs) channels (left and right), 1 electromyogram (chin EMG) channel and two leg electromyogram channels. Our DCNN-based method is tested on our SDCP dataset collected from child patients aged from 5 to 10 years old. The results show that our method yields the overall classification accuracy of 84.27% and macro F1-score of 72.51% which are higher than those of existing sliding window-based methods. One of the biggest advantages of our DCNN-based method is that it processes raw PSG recordings and internally extracts features useful for accurate sleep stage classification. We examine whether this is applicable for sleep data of adult patients by testing our method on a well-known public dataset Sleep-EDFX. Our method achieves the average overall accuracy of 90.89% which is comparable to those of state-of-the-art methods without using any hand-crafted features. This result indicates the great potential of our method because it can be generally used for timestamp-level classification on multivariate time-series in various medical fields. Additionally, we provide source codes so that researchers can reproduce the results in this paper and extend our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
黑子哲也发布了新的文献求助10
2秒前
笨笨垣发布了新的文献求助10
3秒前
小肖的KYT应助风淡了采纳,获得10
3秒前
笑点低蜜蜂完成签到,获得积分10
3秒前
梓泽丘墟应助yy采纳,获得10
3秒前
3秒前
CodeCraft应助小益达采纳,获得10
5秒前
5秒前
释然完成签到,获得积分10
5秒前
Kaleido发布了新的文献求助10
6秒前
6秒前
李爱国应助这个不好吃采纳,获得10
6秒前
7秒前
天天快乐应助dddy采纳,获得10
7秒前
张大宝完成签到 ,获得积分10
8秒前
8秒前
不配.应助小核桃采纳,获得30
8秒前
wanci应助沉默哈密瓜采纳,获得10
8秒前
苏苏发布了新的文献求助10
8秒前
CipherSage应助苗佳采纳,获得10
8秒前
153495159应助Z1采纳,获得10
8秒前
9秒前
李健应助hu采纳,获得10
10秒前
呼啦啦完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
gnufgg完成签到,获得积分10
11秒前
行走De太阳花完成签到,获得积分10
11秒前
zoe关闭了zoe文献求助
11秒前
jiyuan发布了新的文献求助10
12秒前
Hello应助xfwang采纳,获得10
12秒前
jw发布了新的文献求助10
13秒前
烤乳朱完成签到,获得积分10
13秒前
微不足道发布了新的文献求助10
13秒前
13秒前
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153113
求助须知:如何正确求助?哪些是违规求助? 2804274
关于积分的说明 7858206
捐赠科研通 2462058
什么是DOI,文献DOI怎么找? 1310639
科研通“疑难数据库(出版商)”最低求助积分说明 629314
版权声明 601794