A multi-energy load prediction model based on deep multi-task learning and ensemble approach for regional integrated energy systems

计算机科学 人工智能 集成学习 人工神经网络 机器学习 能量(信号处理) 任务(项目管理) 能源消耗 Boosting(机器学习) 工程类 数学 统计 电气工程 系统工程
作者
Xuan Wang,Shouxiang Wang,Qianyu Zhao,Shaomin Wang,Fu Liwei
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier BV]
卷期号:126: 106583-106583 被引量:108
标识
DOI:10.1016/j.ijepes.2020.106583
摘要

Regional integrated energy system (RIES) plays an important role in the energy economy because of its advantages such as low environmental pollution and high efficiency cascade energy utilization. In order to ensure the operational efficiency and reliability of RIES, the accurate prediction of energy demand has become a crucial task. To this end, this paper proposes a novel multi-energy load prediction model based on deep multi-task learning and ensemble approach for RIES. Its novelty lies in the following four aspects: (1) considering the high-dimensional temporal and spatial features, a hybrid network based on convolutional neural network (CNN) and gated recurrent unit (GRU) is utilized to extract high-dimensional abstract features and model nonlinear time series dynamically; (2) to meet the prediction requirements of various loads, three GRU networks with different structures are designed, which can adapt to different types of loads with various fluctuations; (3) considering the coupling relations, an enhanced multi-task learning with homoscedastic uncertainty (HUMTL) is proposed, which can better make the prediction tasks of various loads achieve the optimum simultaneously; (4) to realize the sharing of learning results of different structure networks, ensemble approach based on gradient boosting regressor tree (GBRT) is adopted, which can make a weighted summary by the prediction results of various energy features learning in different degrees. Numerical example shows that the proposed model can dig the coupling relations among various energy systems deeper, explore the temporal and spatial correlation of multi-energy loads further, and it has higher prediction accuracy and better prediction applicability than other current advanced models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火火完成签到,获得积分10
1秒前
1秒前
冷艳冷安完成签到,获得积分10
1秒前
Sencetich发布了新的文献求助10
3秒前
Salt发布了新的文献求助10
3秒前
5秒前
丢丢银完成签到,获得积分10
6秒前
7秒前
7秒前
陈文娟发布了新的文献求助10
7秒前
oh应助北风采纳,获得10
7秒前
9秒前
思源应助哈哈哈采纳,获得10
9秒前
田様应助冷艳冷安采纳,获得10
10秒前
小猪佩奇发布了新的文献求助10
10秒前
Miracle完成签到,获得积分10
11秒前
zhizhi发布了新的文献求助10
11秒前
12秒前
13秒前
PL发布了新的文献求助10
14秒前
14秒前
14秒前
zhh发布了新的文献求助10
15秒前
16秒前
16秒前
没有银完成签到,获得积分10
16秒前
jrzsy发布了新的文献求助10
17秒前
科研通AI2S应助陈文娟采纳,获得30
17秒前
Liufgui应助欣喜的以丹采纳,获得20
18秒前
丙烯酸树脂完成签到,获得积分10
18秒前
xxxllllll发布了新的文献求助10
18秒前
19秒前
zhang值发布了新的文献求助10
20秒前
20秒前
ssherry发布了新的文献求助10
20秒前
ddstty完成签到,获得积分10
20秒前
21秒前
21秒前
科研通AI2S应助余闻问采纳,获得10
22秒前
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998499
求助须知:如何正确求助?哪些是违规求助? 3538037
关于积分的说明 11273124
捐赠科研通 3277005
什么是DOI,文献DOI怎么找? 1807250
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810061