亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A multi-energy load prediction model based on deep multi-task learning and ensemble approach for regional integrated energy systems

计算机科学 人工智能 集成学习 人工神经网络 机器学习 能量(信号处理) 任务(项目管理) 能源消耗 Boosting(机器学习) 工程类 统计 数学 系统工程 电气工程
作者
Xuan Wang,Shouxiang Wang,Qianyu Zhao,Shaomin Wang,Fu Liwei
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier BV]
卷期号:126: 106583-106583 被引量:118
标识
DOI:10.1016/j.ijepes.2020.106583
摘要

Regional integrated energy system (RIES) plays an important role in the energy economy because of its advantages such as low environmental pollution and high efficiency cascade energy utilization. In order to ensure the operational efficiency and reliability of RIES, the accurate prediction of energy demand has become a crucial task. To this end, this paper proposes a novel multi-energy load prediction model based on deep multi-task learning and ensemble approach for RIES. Its novelty lies in the following four aspects: (1) considering the high-dimensional temporal and spatial features, a hybrid network based on convolutional neural network (CNN) and gated recurrent unit (GRU) is utilized to extract high-dimensional abstract features and model nonlinear time series dynamically; (2) to meet the prediction requirements of various loads, three GRU networks with different structures are designed, which can adapt to different types of loads with various fluctuations; (3) considering the coupling relations, an enhanced multi-task learning with homoscedastic uncertainty (HUMTL) is proposed, which can better make the prediction tasks of various loads achieve the optimum simultaneously; (4) to realize the sharing of learning results of different structure networks, ensemble approach based on gradient boosting regressor tree (GBRT) is adopted, which can make a weighted summary by the prediction results of various energy features learning in different degrees. Numerical example shows that the proposed model can dig the coupling relations among various energy systems deeper, explore the temporal and spatial correlation of multi-energy loads further, and it has higher prediction accuracy and better prediction applicability than other current advanced models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
31秒前
55秒前
Sym发布了新的文献求助10
56秒前
立行完成签到 ,获得积分10
1分钟前
安静书雁完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
古铜完成签到 ,获得积分10
3分钟前
契咯完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
苏楠完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
老迟到的友桃完成签到 ,获得积分10
6分钟前
ceeray23发布了新的文献求助20
6分钟前
tingalan应助科研通管家采纳,获得10
6分钟前
bookgg完成签到 ,获得积分10
6分钟前
6分钟前
ZgnomeshghT发布了新的文献求助10
6分钟前
善学以致用应助ZgnomeshghT采纳,获得10
6分钟前
6分钟前
6分钟前
7分钟前
7分钟前
7分钟前
7分钟前
孤独剑完成签到 ,获得积分10
7分钟前
科研通AI2S应助ceeray23采纳,获得20
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4889480
求助须知:如何正确求助?哪些是违规求助? 4173477
关于积分的说明 12952093
捐赠科研通 3934926
什么是DOI,文献DOI怎么找? 2159102
邀请新用户注册赠送积分活动 1177454
关于科研通互助平台的介绍 1082281