A multi-energy load prediction model based on deep multi-task learning and ensemble approach for regional integrated energy systems

计算机科学 人工智能 集成学习 人工神经网络 机器学习 能量(信号处理) 任务(项目管理) 能源消耗 Boosting(机器学习) 工程类 数学 统计 电气工程 系统工程
作者
Xuan Wang,Shouxiang Wang,Qianyu Zhao,Shaomin Wang,Fu Liwei
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier]
卷期号:126: 106583-106583 被引量:108
标识
DOI:10.1016/j.ijepes.2020.106583
摘要

Regional integrated energy system (RIES) plays an important role in the energy economy because of its advantages such as low environmental pollution and high efficiency cascade energy utilization. In order to ensure the operational efficiency and reliability of RIES, the accurate prediction of energy demand has become a crucial task. To this end, this paper proposes a novel multi-energy load prediction model based on deep multi-task learning and ensemble approach for RIES. Its novelty lies in the following four aspects: (1) considering the high-dimensional temporal and spatial features, a hybrid network based on convolutional neural network (CNN) and gated recurrent unit (GRU) is utilized to extract high-dimensional abstract features and model nonlinear time series dynamically; (2) to meet the prediction requirements of various loads, three GRU networks with different structures are designed, which can adapt to different types of loads with various fluctuations; (3) considering the coupling relations, an enhanced multi-task learning with homoscedastic uncertainty (HUMTL) is proposed, which can better make the prediction tasks of various loads achieve the optimum simultaneously; (4) to realize the sharing of learning results of different structure networks, ensemble approach based on gradient boosting regressor tree (GBRT) is adopted, which can make a weighted summary by the prediction results of various energy features learning in different degrees. Numerical example shows that the proposed model can dig the coupling relations among various energy systems deeper, explore the temporal and spatial correlation of multi-energy loads further, and it has higher prediction accuracy and better prediction applicability than other current advanced models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丸子发布了新的文献求助10
3秒前
drhx完成签到,获得积分10
3秒前
3秒前
4秒前
不鸭完成签到 ,获得积分10
5秒前
消消乐发布了新的文献求助10
5秒前
6秒前
Frank发布了新的文献求助10
7秒前
i学习完成签到,获得积分10
10秒前
是啊余啊发布了新的文献求助10
10秒前
科研通AI2S应助顺心的从筠采纳,获得10
10秒前
鲨鱼辣椒发布了新的文献求助10
11秒前
雪山飞龙发布了新的文献求助10
12秒前
Owen应助活泼莫英采纳,获得10
12秒前
云野完成签到,获得积分20
13秒前
劲秉应助crk采纳,获得10
18秒前
26秒前
34秒前
科研通AI2S应助caster1采纳,获得10
35秒前
36秒前
37秒前
Howie发布了新的文献求助60
40秒前
活泼莫英发布了新的文献求助10
40秒前
40秒前
41秒前
小蘑菇应助慕冰蝶采纳,获得10
41秒前
42秒前
鲨鱼辣椒完成签到,获得积分10
42秒前
田様应助追寻的身影采纳,获得20
43秒前
43秒前
44秒前
李大白完成签到 ,获得积分10
44秒前
廉紫真发布了新的文献求助10
45秒前
简单发布了新的文献求助10
45秒前
Dr.Liujun发布了新的文献求助10
47秒前
48秒前
无名老大应助清秀的天德采纳,获得10
51秒前
W_Jnf应助润润润采纳,获得10
52秒前
gggghhhh发布了新的文献求助30
54秒前
喜悦的白羊完成签到,获得积分10
55秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352334
求助须知:如何正确求助?哪些是违规求助? 2977561
关于积分的说明 8680037
捐赠科研通 2658501
什么是DOI,文献DOI怎么找? 1455839
科研通“疑难数据库(出版商)”最低求助积分说明 674121
邀请新用户注册赠送积分活动 664666