已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A multi-energy load prediction model based on deep multi-task learning and ensemble approach for regional integrated energy systems

计算机科学 人工智能 集成学习 人工神经网络 机器学习 能量(信号处理) 任务(项目管理) 能源消耗 Boosting(机器学习) 工程类 统计 数学 系统工程 电气工程
作者
Xuan Wang,Shouxiang Wang,Qianyu Zhao,Shaomin Wang,Fu Liwei
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier]
卷期号:126: 106583-106583 被引量:118
标识
DOI:10.1016/j.ijepes.2020.106583
摘要

Regional integrated energy system (RIES) plays an important role in the energy economy because of its advantages such as low environmental pollution and high efficiency cascade energy utilization. In order to ensure the operational efficiency and reliability of RIES, the accurate prediction of energy demand has become a crucial task. To this end, this paper proposes a novel multi-energy load prediction model based on deep multi-task learning and ensemble approach for RIES. Its novelty lies in the following four aspects: (1) considering the high-dimensional temporal and spatial features, a hybrid network based on convolutional neural network (CNN) and gated recurrent unit (GRU) is utilized to extract high-dimensional abstract features and model nonlinear time series dynamically; (2) to meet the prediction requirements of various loads, three GRU networks with different structures are designed, which can adapt to different types of loads with various fluctuations; (3) considering the coupling relations, an enhanced multi-task learning with homoscedastic uncertainty (HUMTL) is proposed, which can better make the prediction tasks of various loads achieve the optimum simultaneously; (4) to realize the sharing of learning results of different structure networks, ensemble approach based on gradient boosting regressor tree (GBRT) is adopted, which can make a weighted summary by the prediction results of various energy features learning in different degrees. Numerical example shows that the proposed model can dig the coupling relations among various energy systems deeper, explore the temporal and spatial correlation of multi-energy loads further, and it has higher prediction accuracy and better prediction applicability than other current advanced models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
义气丹雪应助slby采纳,获得10
1秒前
泥巴完成签到,获得积分10
1秒前
隐形曼青应助德胜岩山神采纳,获得10
1秒前
3秒前
量子星尘发布了新的文献求助10
5秒前
7秒前
帅气善斓应助Jsl采纳,获得10
7秒前
9秒前
dzll发布了新的文献求助10
10秒前
滴嘟滴嘟完成签到 ,获得积分10
13秒前
15秒前
dzll完成签到,获得积分10
15秒前
YUE发布了新的文献求助10
15秒前
bc应助科研通管家采纳,获得30
16秒前
16秒前
Orange应助科研通管家采纳,获得10
16秒前
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
研友_8K2QJZ完成签到,获得积分10
16秒前
繁华若梦完成签到 ,获得积分10
16秒前
17秒前
17秒前
木棉完成签到,获得积分10
17秒前
隐形曼青应助现代的手套采纳,获得80
18秒前
Arslan完成签到,获得积分20
18秒前
田様应助靖旎采纳,获得10
18秒前
清爽的梦秋完成签到 ,获得积分10
18秒前
旭旭汉堡包完成签到,获得积分10
20秒前
CNS冲完成签到,获得积分10
20秒前
20秒前
23秒前
23秒前
cai发布了新的文献求助10
23秒前
24秒前
ff发布了新的文献求助10
25秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705551
求助须知:如何正确求助?哪些是违规求助? 5164845
关于积分的说明 15245734
捐赠科研通 4859361
什么是DOI,文献DOI怎么找? 2607785
邀请新用户注册赠送积分活动 1558875
关于科研通互助平台的介绍 1516424