Peak detection for MALDI mass spectrometry imaging data using sparse frame multipliers

预处理器 计算机科学 质谱成像 稳健性(进化) 数据集 人工智能 质谱法 原始数据 噪音(视频) 马尔迪成像 模式识别(心理学) 数据挖掘 图像分辨率 算法 基质辅助激光解吸/电离 化学 图像(数学) 色谱法 基因 吸附 生物化学 解吸 有机化学 程序设计语言
作者
Florian Lieb,Tobias Boskamp,Hans‐Georg Stark
出处
期刊:Journal of Proteomics [Elsevier BV]
卷期号:225: 103852-103852 被引量:8
标识
DOI:10.1016/j.jprot.2020.103852
摘要

MALDI mass spectrometry imaging (MALDI MSI) is a spatially resolved analytical tool for biological tissue analysis by measuring mass-to-charge ratios of ionized molecules. With increasing spatial and mass resolution of MALDI MSI data, appropriate data analysis and interpretation is getting more and more challenging. A reliable separation of important peaks from noise (aka peak detection) is a prerequisite for many subsequent processing steps and should be as accurate as possible. We propose a novel peak detection algorithm based on sparse frame multipliers, which can be applied to raw MALDI MSI data without prior preprocessing. The accuracy is evaluated on a simulated data set in comparison with state-of-the-art algorithms. These results also show the proposed method's robustness to baseline and noise effects. In addition, the method is evaluated on real MALDI-TOF data sets, whereby spatial information can be included in the peak picking process. The field of proteomics, in particular MALDI Imaging, encompasses huge amounts of data. The processing and preprocessing of this data in order to segment or classify spatial structures of certain peptides or isotope patterns can hence be cumbersome and includes several independent processing steps. In this work, we propose a simple peak-picking algorithm to quickly analyze large raw MALDI Imaging data sets, which has a better sensitivity than current state-of-the-art algorithms. Further, it is possible to get an overall overview of the entire data set showing the most significant and spatially localized peptide structures and, hence, contributes all data driven evaluation of MALDI Imaging data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
打打应助Soul采纳,获得10
刚刚
zjq发布了新的文献求助10
1秒前
大白发布了新的文献求助10
1秒前
科研通AI6应助念所三旬采纳,获得10
2秒前
许子健完成签到,获得积分10
2秒前
SciGPT应助徐昊雯采纳,获得10
2秒前
乐乐应助跨材料采纳,获得10
2秒前
2秒前
科研通AI5应助安详小丸子采纳,获得10
3秒前
十一号发布了新的文献求助10
3秒前
3秒前
shin完成签到,获得积分10
3秒前
霜之哀伤完成签到,获得积分10
3秒前
hersy发布了新的文献求助10
3秒前
李家龙发布了新的文献求助10
3秒前
hongdongxiang发布了新的文献求助10
4秒前
署前街少年完成签到,获得积分10
4秒前
4秒前
tuzi2160完成签到,获得积分10
4秒前
4秒前
Akim应助miaomiao采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
李旭东发布了新的文献求助20
5秒前
刘小白完成签到,获得积分10
6秒前
6秒前
7秒前
乐乐应助噜噜晓采纳,获得10
7秒前
静心404发布了新的文献求助10
8秒前
付大威发布了新的文献求助20
8秒前
Orange应助tuzi2160采纳,获得10
8秒前
8秒前
我是老大应助安静的难破采纳,获得10
8秒前
zimo发布了新的文献求助10
8秒前
9秒前
鲸鱼发布了新的文献求助10
9秒前
传奇3应助tosania采纳,获得10
9秒前
9秒前
9秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646