Radiomics of apparent diffusion coefficient maps to predict histologic grade in squamous cell carcinoma of the oral tongue and floor of mouth: a preliminary study

医学 有效扩散系数 无线电技术 舌头 接收机工作特性 放射科 队列 逻辑回归 磁共振成像 Lasso(编程语言) 核医学 口底 病理 内科学 计算机科学 万维网
作者
Jiliang Ren,Meng Qi,Ying Yuan,Xiaofeng Tao
出处
期刊:Acta Radiologica [SAGE]
卷期号:62 (4): 453-461 被引量:16
标识
DOI:10.1177/0284185120931683
摘要

Background Histologic grade assessment plays an important part in the clinical decision making and prognostic evaluation of squamous cell carcinoma (SCC) of the oral tongue and floor of mouth (FOM). Purpose To assess the value of apparent diffusion coefficient (ADC)-based radiomics in discriminating between low- and high-grade SCC of the oral tongue and FOM. Material and Methods We included data from 88 patients (training cohort: n = 59; testing cohort: n = 29) who underwent diffusion-weighted imaging with a 3.0-T magnetic resonance imaging scanner before treatment. A total of 526 radiomics features were extracted from ADC maps to construct a radiomics signature with least absolute shrinkage and selection operator logistic regression. Receiver operating characteristic curves and areas under the curve (AUCs) were used to evaluate the performance of radiomic signature. Results Five features were selected to construct the radiomics signature for predicting histologic grade. The ADC-based radiomics signature performed well for discriminating between low- and high-grade tumors, with AUCs of 0.83 in both cohorts. Based on the cut-off value of the training cohort, the radiomics signature achieved accuracies of 0.78 and 0.79, sensitivities of 0.65 and 0.71, and specificities of 0.85 and 0.82 in the training and testing cohorts, respectively. Conclusion ADC-based radiomics can be a useful and promising non-invasive method for predicting histologic grade of SCC of the oral tongue and FOM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
HaHa007发布了新的文献求助10
1秒前
华仔应助欢喜恶天采纳,获得10
2秒前
雨眠发布了新的文献求助10
2秒前
何文珍发布了新的文献求助10
2秒前
缓慢天抒发布了新的文献求助10
2秒前
2秒前
one发布了新的文献求助10
3秒前
Shan发布了新的文献求助10
3秒前
3秒前
4秒前
沐沐发布了新的文献求助10
4秒前
cai白白发布了新的文献求助10
5秒前
5秒前
赵哈哈完成签到,获得积分10
5秒前
6秒前
yzy完成签到,获得积分10
7秒前
8秒前
8秒前
zhangzhang发布了新的文献求助10
8秒前
9秒前
yzy发布了新的文献求助10
9秒前
11秒前
Echo完成签到,获得积分10
11秒前
kanoz发布了新的文献求助20
11秒前
11秒前
科研通AI5应助五五乐采纳,获得10
11秒前
lqc发布了新的文献求助10
12秒前
田様应助小燕采纳,获得10
12秒前
12秒前
Milio应助Sally采纳,获得30
12秒前
养猪大户完成签到 ,获得积分10
12秒前
13秒前
13秒前
14秒前
14秒前
14秒前
16秒前
16秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475201
求助须知:如何正确求助?哪些是违规求助? 3067198
关于积分的说明 9103105
捐赠科研通 2758595
什么是DOI,文献DOI怎么找? 1513687
邀请新用户注册赠送积分活动 699775
科研通“疑难数据库(出版商)”最低求助积分说明 699119