JSON文件
计算机科学
模式(遗传算法)
推论
先验与后验
数据结构
情报检索
文件结构说明
数据挖掘
理论计算机科学
程序设计语言
人工智能
XML
万维网
认识论
哲学
作者
Mohamed Amine Baazizi,Clément Berti,Dario Colazzo,Giorgio Ghelli,Carlo Sartiani
出处
期刊:Le Centre pour la Communication Scientifique Directe - HAL - Diderot
日期:2020-03-30
标识
DOI:10.5441/002/edbt.2020.82
摘要
JSON established itself as a popular data format for representing data whose structure is irregular or unknown a priori. JSON collections are usually massive and schema-less. Inferring a schema describing the structure of these collections is crucial for formulating meaningful queries and for adopting schema-based optimizations. In a recent work, we proposed a Map/Reduce schema inference approach that either infers a compact representation of the input collection or a precise description of every possible shape in the data. Since no level of precision is ideal, it is more appealing to give the analyst the freedom of choosing between different levels of precisions in an interactive fashion. In this paper we describe a schema inference system offering this important functionality.
科研通智能强力驱动
Strongly Powered by AbleSci AI