亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bridging deep and multiple kernel learning: A review

计算机科学 人工智能 机器学习 多核学习 核(代数) 树核 核方法 核希尔伯特再生空间 深度学习 分布的核嵌入 字符串内核 径向基函数核 核主成分分析 多项式核 降维 支持向量机 数学 希尔伯特空间 数学分析 组合数学
作者
Ting‐Hua Wang,Lin Zhang,Wenyu Hu
出处
期刊:Information Fusion [Elsevier]
卷期号:67: 3-13 被引量:54
标识
DOI:10.1016/j.inffus.2020.10.002
摘要

Kernel methods and deep learning are two of the most currently remarkable machine learning techniques that have achieved great success in many applications. Kernel methods are powerful tools to capture nonlinear patterns behind data. They implicitly learn high (even infinite) dimensional nonlinear features in the reproducing kernel Hilbert space (RKHS) while making the computation tractable by leveraging the kernel trick. It is commonly agreed that the success of kernel methods is very much dependent on the choice of kernel. Multiple kernel learning (MKL) is one possible scheme that performs kernel combination and selection for a variety of learning tasks, such as classification, clustering, and dimensionality reduction. Deep learning models project input data through several layers of nonlinearity and learn different levels of abstraction. The composition of multiple layers of nonlinear functions can approximate a rich set of naturally occurring input-output dependencies. To bridge kernel methods and deep learning, deep kernel learning has been proven to be an effective method to learn complex feature representations by combining the nonparametric flexibility of kernel methods with the structural properties of deep learning. This article presents a comprehensive overview of the state-of-the-art approaches that bridge the MKL and deep learning techniques. Specifically, we systematically review the typical hybrid models, training techniques, and their theoretical and practical benefits, followed by remaining challenges and future directions. We hope that our perspectives and discussions serve as valuable references for new practitioners and theoreticians seeking to innovate in the applications of the approaches incorporating the advantages of both paradigms and exploring new synergies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王颖超发布了新的文献求助10
5秒前
poki完成签到 ,获得积分10
14秒前
李健的小迷弟应助Marshall采纳,获得10
15秒前
科研通AI2S应助人帅气质佳采纳,获得10
17秒前
22秒前
Marshall发布了新的文献求助10
27秒前
JamesPei应助科研通管家采纳,获得10
36秒前
JamesPei应助科研通管家采纳,获得10
36秒前
NattyPoe应助科研通管家采纳,获得10
36秒前
andrele应助科研通管家采纳,获得20
36秒前
NattyPoe应助科研通管家采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
andrele应助科研通管家采纳,获得20
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
斯文败类应助欣喜面包采纳,获得10
37秒前
39秒前
53秒前
55秒前
xiaoyu发布了新的文献求助10
56秒前
56秒前
liuliu发布了新的文献求助10
59秒前
欣喜面包发布了新的文献求助10
1分钟前
orixero应助yolo采纳,获得10
1分钟前
苯苯发布了新的文献求助10
1分钟前
1分钟前
ayun完成签到 ,获得积分10
1分钟前
liuxiaohui发布了新的文献求助10
1分钟前
啵子发布了新的文献求助10
1分钟前
1分钟前
1分钟前
sugkook发布了新的文献求助10
1分钟前
曾业辉发布了新的文献求助10
1分钟前
2分钟前
零知识发布了新的文献求助10
2分钟前
粥粥大王完成签到,获得积分10
2分钟前
粥粥大王发布了新的文献求助10
2分钟前
652183758完成签到 ,获得积分10
2分钟前
2分钟前
所所应助柚子采纳,获得10
2分钟前
酷波er应助啵子采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780249
求助须知:如何正确求助?哪些是违规求助? 5653879
关于积分的说明 15452923
捐赠科研通 4910998
什么是DOI,文献DOI怎么找? 2643189
邀请新用户注册赠送积分活动 1590828
关于科研通互助平台的介绍 1545336