Bridging deep and multiple kernel learning: A review

计算机科学 人工智能 机器学习 多核学习 核(代数) 树核 核方法 核希尔伯特再生空间 深度学习 分布的核嵌入 字符串内核 径向基函数核 核主成分分析 多项式核 降维 支持向量机 数学 希尔伯特空间 数学分析 组合数学
作者
Ting‐Hua Wang,Lin Zhang,Wenyu Hu
出处
期刊:Information Fusion [Elsevier BV]
卷期号:67: 3-13 被引量:54
标识
DOI:10.1016/j.inffus.2020.10.002
摘要

Kernel methods and deep learning are two of the most currently remarkable machine learning techniques that have achieved great success in many applications. Kernel methods are powerful tools to capture nonlinear patterns behind data. They implicitly learn high (even infinite) dimensional nonlinear features in the reproducing kernel Hilbert space (RKHS) while making the computation tractable by leveraging the kernel trick. It is commonly agreed that the success of kernel methods is very much dependent on the choice of kernel. Multiple kernel learning (MKL) is one possible scheme that performs kernel combination and selection for a variety of learning tasks, such as classification, clustering, and dimensionality reduction. Deep learning models project input data through several layers of nonlinearity and learn different levels of abstraction. The composition of multiple layers of nonlinear functions can approximate a rich set of naturally occurring input-output dependencies. To bridge kernel methods and deep learning, deep kernel learning has been proven to be an effective method to learn complex feature representations by combining the nonparametric flexibility of kernel methods with the structural properties of deep learning. This article presents a comprehensive overview of the state-of-the-art approaches that bridge the MKL and deep learning techniques. Specifically, we systematically review the typical hybrid models, training techniques, and their theoretical and practical benefits, followed by remaining challenges and future directions. We hope that our perspectives and discussions serve as valuable references for new practitioners and theoreticians seeking to innovate in the applications of the approaches incorporating the advantages of both paradigms and exploring new synergies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助斑马兽采纳,获得10
1秒前
田様应助梧梧采纳,获得10
2秒前
郭嘉仪发布了新的文献求助10
2秒前
2秒前
bkagyin应助优秀的尔风采纳,获得10
2秒前
浮游应助dxm采纳,获得10
3秒前
Sophia完成签到,获得积分10
3秒前
zengji完成签到,获得积分10
3秒前
简单老三完成签到,获得积分10
3秒前
希望天下0贩的0应助PiCarQ采纳,获得30
3秒前
3秒前
丘比特应助满意草丛采纳,获得10
3秒前
Haru发布了新的文献求助10
4秒前
李月月完成签到,获得积分10
4秒前
科研通AI5应助星辰采纳,获得10
4秒前
虚心岂愈完成签到 ,获得积分10
5秒前
LY发布了新的文献求助30
5秒前
我是哈哈超人完成签到,获得积分10
5秒前
赘婿应助路戳戳采纳,获得10
6秒前
李婧祎发布了新的文献求助10
6秒前
脑洞疼应助li采纳,获得10
6秒前
科研通AI5应助会飞的猪采纳,获得10
6秒前
lwz完成签到,获得积分10
6秒前
feedyoursoul发布了新的文献求助10
6秒前
6秒前
7秒前
wang应助一生平安采纳,获得10
7秒前
积极一德发布了新的文献求助20
7秒前
lily发布了新的文献求助10
7秒前
8秒前
卢卢发布了新的文献求助10
8秒前
浮游应助xny采纳,获得10
8秒前
9秒前
zz发布了新的文献求助10
9秒前
10秒前
Jasper应助buxiangshangxue采纳,获得30
10秒前
11秒前
烟花应助wait采纳,获得10
11秒前
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
Conductance of concentrated aqueous solutions of electrolytes. I. Strong uni-univalent electrolytes 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5016604
求助须知:如何正确求助?哪些是违规求助? 4256659
关于积分的说明 13265528
捐赠科研通 4060614
什么是DOI,文献DOI怎么找? 2220941
邀请新用户注册赠送积分活动 1230246
关于科研通互助平台的介绍 1152831