Bridging deep and multiple kernel learning: A review

计算机科学 人工智能 机器学习 多核学习 核(代数) 树核 核方法 核希尔伯特再生空间 深度学习 分布的核嵌入 字符串内核 径向基函数核 核主成分分析 多项式核 降维 支持向量机 数学 希尔伯特空间 数学分析 组合数学
作者
Ting‐Hua Wang,Lin Zhang,Wenyu Hu
出处
期刊:Information Fusion [Elsevier]
卷期号:67: 3-13 被引量:54
标识
DOI:10.1016/j.inffus.2020.10.002
摘要

Kernel methods and deep learning are two of the most currently remarkable machine learning techniques that have achieved great success in many applications. Kernel methods are powerful tools to capture nonlinear patterns behind data. They implicitly learn high (even infinite) dimensional nonlinear features in the reproducing kernel Hilbert space (RKHS) while making the computation tractable by leveraging the kernel trick. It is commonly agreed that the success of kernel methods is very much dependent on the choice of kernel. Multiple kernel learning (MKL) is one possible scheme that performs kernel combination and selection for a variety of learning tasks, such as classification, clustering, and dimensionality reduction. Deep learning models project input data through several layers of nonlinearity and learn different levels of abstraction. The composition of multiple layers of nonlinear functions can approximate a rich set of naturally occurring input-output dependencies. To bridge kernel methods and deep learning, deep kernel learning has been proven to be an effective method to learn complex feature representations by combining the nonparametric flexibility of kernel methods with the structural properties of deep learning. This article presents a comprehensive overview of the state-of-the-art approaches that bridge the MKL and deep learning techniques. Specifically, we systematically review the typical hybrid models, training techniques, and their theoretical and practical benefits, followed by remaining challenges and future directions. We hope that our perspectives and discussions serve as valuable references for new practitioners and theoreticians seeking to innovate in the applications of the approaches incorporating the advantages of both paradigms and exploring new synergies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西瓜发布了新的文献求助10
1秒前
2秒前
李浩然发布了新的文献求助10
3秒前
4秒前
酷波er应助Jack80采纳,获得30
4秒前
晴雨发布了新的文献求助10
5秒前
5秒前
稳重的小刺猬完成签到,获得积分10
5秒前
Efaith完成签到,获得积分10
5秒前
77发布了新的文献求助10
7秒前
科研通AI6应助怕黑书翠采纳,获得10
8秒前
晨雾发布了新的文献求助10
9秒前
9秒前
爆米花应助李_Steven采纳,获得10
9秒前
斯文败类应助李_Steven采纳,获得10
9秒前
李健的小迷弟应助Efaith采纳,获得10
9秒前
科研通AI6应助李_Steven采纳,获得10
9秒前
完美世界应助李_Steven采纳,获得10
10秒前
12秒前
man完成签到,获得积分10
13秒前
wsj发布了新的文献求助30
13秒前
健壮的土豆完成签到 ,获得积分10
13秒前
chaxie完成签到,获得积分10
13秒前
赘婿应助libs采纳,获得10
13秒前
鳗鱼蜻蜓完成签到,获得积分20
14秒前
14秒前
小可爱完成签到 ,获得积分10
15秒前
斯文的莫英完成签到,获得积分10
15秒前
Orange应助李浩然采纳,获得10
15秒前
合适孤兰完成签到,获得积分20
15秒前
16秒前
ww发布了新的文献求助30
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
Peter王完成签到,获得积分10
18秒前
合适孤兰发布了新的文献求助10
19秒前
19秒前
科研通AI2S应助生动友容采纳,获得10
20秒前
笑点低友安完成签到 ,获得积分10
22秒前
罗尼发布了新的文献求助10
23秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620797
求助须知:如何正确求助?哪些是违规求助? 4705375
关于积分的说明 14931806
捐赠科研通 4763300
什么是DOI,文献DOI怎么找? 2551231
邀请新用户注册赠送积分活动 1513783
关于科研通互助平台的介绍 1474672