Bridging deep and multiple kernel learning: A review

计算机科学 人工智能 机器学习 多核学习 核(代数) 树核 核方法 核希尔伯特再生空间 深度学习 分布的核嵌入 字符串内核 径向基函数核 核主成分分析 多项式核 降维 支持向量机 数学 希尔伯特空间 数学分析 组合数学
作者
Ting‐Hua Wang,Lin Zhang,Wenyu Hu
出处
期刊:Information Fusion [Elsevier BV]
卷期号:67: 3-13 被引量:54
标识
DOI:10.1016/j.inffus.2020.10.002
摘要

Kernel methods and deep learning are two of the most currently remarkable machine learning techniques that have achieved great success in many applications. Kernel methods are powerful tools to capture nonlinear patterns behind data. They implicitly learn high (even infinite) dimensional nonlinear features in the reproducing kernel Hilbert space (RKHS) while making the computation tractable by leveraging the kernel trick. It is commonly agreed that the success of kernel methods is very much dependent on the choice of kernel. Multiple kernel learning (MKL) is one possible scheme that performs kernel combination and selection for a variety of learning tasks, such as classification, clustering, and dimensionality reduction. Deep learning models project input data through several layers of nonlinearity and learn different levels of abstraction. The composition of multiple layers of nonlinear functions can approximate a rich set of naturally occurring input-output dependencies. To bridge kernel methods and deep learning, deep kernel learning has been proven to be an effective method to learn complex feature representations by combining the nonparametric flexibility of kernel methods with the structural properties of deep learning. This article presents a comprehensive overview of the state-of-the-art approaches that bridge the MKL and deep learning techniques. Specifically, we systematically review the typical hybrid models, training techniques, and their theoretical and practical benefits, followed by remaining challenges and future directions. We hope that our perspectives and discussions serve as valuable references for new practitioners and theoreticians seeking to innovate in the applications of the approaches incorporating the advantages of both paradigms and exploring new synergies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助黑冰A采纳,获得10
3秒前
balko完成签到,获得积分10
4秒前
肉肉完成签到,获得积分20
5秒前
阳光青文发布了新的文献求助10
6秒前
6秒前
yx_cheng应助灯与鬼采纳,获得10
7秒前
FashionBoy应助hoshi采纳,获得10
9秒前
longer完成签到 ,获得积分10
9秒前
积极的夜香完成签到,获得积分10
10秒前
11秒前
玩命的鱼发布了新的文献求助10
12秒前
13秒前
14秒前
勤恳立轩完成签到 ,获得积分10
14秒前
Akim应助NoMigraine采纳,获得10
15秒前
刘先生发布了新的文献求助10
16秒前
16秒前
gengxw发布了新的文献求助30
16秒前
灰灰喵完成签到 ,获得积分10
17秒前
17秒前
18秒前
deer完成签到,获得积分10
18秒前
华清引完成签到,获得积分10
18秒前
小白发布了新的文献求助10
19秒前
执玉完成签到,获得积分20
19秒前
从容小蘑菇完成签到,获得积分10
20秒前
小星星发布了新的文献求助50
21秒前
zhai发布了新的文献求助10
22秒前
magiczhu完成签到,获得积分10
23秒前
24秒前
常琳琳完成签到,获得积分10
24秒前
siqi发布了新的文献求助10
25秒前
27秒前
CodeCraft应助qdd采纳,获得10
27秒前
共享精神应助科研通管家采纳,获得10
27秒前
28秒前
28秒前
星辰大海应助科研通管家采纳,获得10
28秒前
小二郎应助科研通管家采纳,获得10
28秒前
Hello应助科研通管家采纳,获得10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967367
求助须知:如何正确求助?哪些是违规求助? 3512602
关于积分的说明 11164375
捐赠科研通 3247533
什么是DOI,文献DOI怎么找? 1793886
邀请新用户注册赠送积分活动 874741
科研通“疑难数据库(出版商)”最低求助积分说明 804498