Bridging deep and multiple kernel learning: A review

计算机科学 人工智能 机器学习 多核学习 核(代数) 树核 核方法 核希尔伯特再生空间 深度学习 分布的核嵌入 字符串内核 径向基函数核 核主成分分析 多项式核 降维 支持向量机 数学 希尔伯特空间 数学分析 组合数学
作者
Ting‐Hua Wang,Lin Zhang,Wenyu Hu
出处
期刊:Information Fusion [Elsevier]
卷期号:67: 3-13 被引量:54
标识
DOI:10.1016/j.inffus.2020.10.002
摘要

Kernel methods and deep learning are two of the most currently remarkable machine learning techniques that have achieved great success in many applications. Kernel methods are powerful tools to capture nonlinear patterns behind data. They implicitly learn high (even infinite) dimensional nonlinear features in the reproducing kernel Hilbert space (RKHS) while making the computation tractable by leveraging the kernel trick. It is commonly agreed that the success of kernel methods is very much dependent on the choice of kernel. Multiple kernel learning (MKL) is one possible scheme that performs kernel combination and selection for a variety of learning tasks, such as classification, clustering, and dimensionality reduction. Deep learning models project input data through several layers of nonlinearity and learn different levels of abstraction. The composition of multiple layers of nonlinear functions can approximate a rich set of naturally occurring input-output dependencies. To bridge kernel methods and deep learning, deep kernel learning has been proven to be an effective method to learn complex feature representations by combining the nonparametric flexibility of kernel methods with the structural properties of deep learning. This article presents a comprehensive overview of the state-of-the-art approaches that bridge the MKL and deep learning techniques. Specifically, we systematically review the typical hybrid models, training techniques, and their theoretical and practical benefits, followed by remaining challenges and future directions. We hope that our perspectives and discussions serve as valuable references for new practitioners and theoreticians seeking to innovate in the applications of the approaches incorporating the advantages of both paradigms and exploring new synergies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KYDZZ应助知世耶采纳,获得10
刚刚
1秒前
小蘑菇应助sun采纳,获得10
3秒前
量子星尘发布了新的文献求助10
5秒前
科研小菜发布了新的文献求助20
7秒前
shhoing应助Bill采纳,获得10
7秒前
8秒前
123完成签到 ,获得积分10
8秒前
KUN完成签到,获得积分10
9秒前
liberal完成签到,获得积分10
10秒前
10秒前
10秒前
燕双鹰完成签到,获得积分10
11秒前
hahaha完成签到,获得积分20
11秒前
丘比特应助fffgz采纳,获得10
11秒前
11秒前
熊风发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
hahaha发布了新的文献求助10
14秒前
陈帅洲发布了新的文献求助10
15秒前
本宫还能学完成签到,获得积分10
16秒前
领导范儿应助成就的涵菡采纳,获得10
16秒前
lingjunjie发布了新的文献求助10
16秒前
麦子完成签到,获得积分10
17秒前
sun发布了新的文献求助10
18秒前
123456发布了新的文献求助10
18秒前
abu发布了新的文献求助10
18秒前
19秒前
19秒前
天天快乐应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
十三应助科研通管家采纳,获得10
20秒前
桐桐应助科研通管家采纳,获得10
20秒前
20秒前
今后应助科研通管家采纳,获得10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536588
求助须知:如何正确求助?哪些是违规求助? 4624228
关于积分的说明 14591085
捐赠科研通 4564722
什么是DOI,文献DOI怎么找? 2501884
邀请新用户注册赠送积分活动 1480627
关于科研通互助平台的介绍 1451937