已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Quantitative structure activity relationships (QSARs) and machine learning models for abiotic reduction of organic compounds by an aqueous Fe(II) complex

化学 数量结构-活动关系 单变量 分子描述符 轨道能级差 水溶液 多元统计 计算化学 有机化学 分子 机器学习 立体化学 计算机科学
作者
Yidan Gao,Shifa Zhong,Tifany L. Torralba–Sanchez,Paul G. Tratnyek,E. Weber,Yiling Chen,Huichun Zhang
出处
期刊:Water Research [Elsevier]
卷期号:192: 116843-116843 被引量:30
标识
DOI:10.1016/j.watres.2021.116843
摘要

Abstract Due to the increasing diversity of organic contaminants discharged into anoxic water environments, reactivity prediction is necessary for chemical persistence evaluation for water treatment and risk assessment purposes. Almost all quantitative structure activity relationships (QSARs) that describe rates of contaminant transformation apply only to narrowly-defined, relatively homogenous families of reactants (e.g., dechlorination of alkyl halides). In this work, we develop predictive models for abiotic reduction of 60 organic compounds with diverse reducible functional groups, including nitroaromatic compounds (NACs), aliphatic nitro-compounds (ANCs), aromatic N-oxides (ANOs), isoxazoles (ISXs), polyhalogenated alkanes (PHAs), sulfoxides and sulfones (SOs), and others. Rate constants for their reduction were measured using a model reductant system, Fe(II)-tiron. Qualitatively, the rates followed the order NACs > ANOs ≈ ISXs ≈ PHAs > ANCs > SOs. To develop QSARs, both conventional chemical descriptor-based and machine learning (ML)-based approaches were investigated. Conventional univariate QSARs based on a molecular descriptor ELUMO (energy of the lowest-unoccupied molecular orbital) gave good correlations within classes. Multivariate QSARs combining ELUMO with Abraham descriptors for physico-chemical properties gave slightly improved correlations within classes for NCs and NACs, but little improvement in correlation within other classes or among classes. The ML model obtained covers reduction rates for all classes of compounds and all of the conditions studied with the prediction accuracy similar to those of the conventional QSARs for individual classes (r2 = 0.41–0.98 for univariate QSARs, 0.71–0.94 for multivariate QSARs, and 0.83 for the ML model). Both approaches required a scheme for a priori classification of the compounds for model training. This work offers two alternative modeling approaches to comprehensive abiotic reactivity prediction for persistence evaluation of organic compounds in anoxic water environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Lucky小M发布了新的文献求助10
4秒前
pylchm完成签到,获得积分10
7秒前
水门发布了新的文献求助50
8秒前
8秒前
11秒前
务实一斩发布了新的文献求助10
13秒前
14秒前
pluto应助cola采纳,获得10
14秒前
14秒前
忧伤的烨伟完成签到,获得积分10
14秒前
小天应助路人贾采纳,获得10
15秒前
丞丞汁儿发布了新的文献求助10
15秒前
马铃薯的家完成签到,获得积分10
16秒前
FashionBoy应助无辜凡灵采纳,获得10
18秒前
19秒前
小yi又困啦完成签到,获得积分20
20秒前
姆姆没买完成签到 ,获得积分10
21秒前
隐形曼青应助豆子采纳,获得10
21秒前
路人贾给路人贾的求助进行了留言
22秒前
23秒前
林小雨发布了新的文献求助10
25秒前
小蘑菇应助旅途之人采纳,获得10
25秒前
研友_VZG7GZ应助YMkaiye采纳,获得10
26秒前
充电宝应助小yi又困啦采纳,获得10
27秒前
归尘应助甘地采纳,获得10
27秒前
云中歌完成签到,获得积分10
28秒前
29秒前
29秒前
31秒前
nicheng发布了新的文献求助10
31秒前
31秒前
34秒前
丞丞汁儿完成签到,获得积分10
34秒前
咕咕发布了新的文献求助10
35秒前
包容新蕾完成签到 ,获得积分10
35秒前
35秒前
xuyi完成签到,获得积分10
36秒前
豆子发布了新的文献求助10
36秒前
38秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538786
求助须知:如何正确求助?哪些是违规求助? 3116482
关于积分的说明 9325411
捐赠科研通 2814378
什么是DOI,文献DOI怎么找? 1546605
邀请新用户注册赠送积分活动 720657
科研通“疑难数据库(出版商)”最低求助积分说明 712109