Crystal-phase and surface-structure engineering of ruthenium nanocrystals

纳米晶 材料科学 纳米技术 相(物质) 表面工程 结晶学 催化作用 晶体结构 Crystal(编程语言) 计算机科学 化学 生物化学 有机化学 程序设计语言
作者
Ming Zhao,Younan Xia
出处
期刊:Nature Reviews Materials [Springer Nature]
卷期号:5 (6): 440-459 被引量:153
标识
DOI:10.1038/s41578-020-0183-3
摘要

Metal nanocrystals with controlled shapes or surface structures have received increasing attention, owing to their desirable properties for applications ranging from catalysis to photonics, energy and biomedicine. Most studies, however, have been limited to nanocrystals with the same crystal phase as the bulk material. Engineering the phase of metal nanocrystals while simultaneously attaining shape-controlled synthesis has recently emerged as a new frontier of research. Here, we use Ru as an example to evaluate recent progress in the synthesis of metal nanocrystals featuring different crystal phases and well-controlled shapes. We first discuss synthetic strategies for controlling the crystal phase and shape of Ru nanocrystals, with a focus on new mechanistic insights. We then highlight the major factors that affect the packing of Ru atoms and, thus, the crystal phase, followed by an examination of the thermal stability of Ru nanocrystals in terms of both crystal phase and shape. Next, we showcase the successful implementation of these Ru nanocrystals in various catalytic applications. Finally, we end with a discussion of the challenges and opportunities in the field, including leveraging the lessons learned from Ru to engineer the crystal phase and surface structure of other metals. Engineering the phase of metal nanocrystals while simultaneously achieving shape-controlled synthesis can enable new and desirable properties. This Review highlights the synthetic strategies for generating Ru nanocrystals with different crystal phases and surface structures, and outlines their implementation in catalytic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
佳妹儿完成签到,获得积分10
刚刚
Lydia完成签到,获得积分10
刚刚
王某人发布了新的文献求助10
1秒前
automan发布了新的文献求助40
1秒前
Hello应助阳光的向雁采纳,获得10
1秒前
3秒前
小袁完成签到,获得积分10
3秒前
lin完成签到,获得积分20
4秒前
5秒前
barrycream完成签到,获得积分10
6秒前
sisyphus完成签到,获得积分10
7秒前
大反应釜完成签到,获得积分10
8秒前
小王同学完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
海盗船长完成签到,获得积分10
10秒前
星辰大海应助zmt1134采纳,获得10
11秒前
神雕侠发布了新的文献求助10
11秒前
kiyo发布了新的文献求助30
14秒前
15秒前
小王同学发布了新的文献求助10
15秒前
丢丢完成签到,获得积分10
21秒前
谢钰完成签到 ,获得积分10
25秒前
shanshan完成签到,获得积分10
25秒前
26秒前
阳光的向雁完成签到,获得积分10
27秒前
啊张应助guo采纳,获得10
28秒前
puhu应助guo采纳,获得10
28秒前
哇哈完成签到 ,获得积分10
28秒前
包容若风完成签到,获得积分10
29秒前
30秒前
30秒前
30秒前
日月星陈发布了新的文献求助10
32秒前
32秒前
威武语儿完成签到,获得积分10
32秒前
Balance Man发布了新的文献求助10
33秒前
科研通AI2S应助Jerryluo采纳,获得10
33秒前
烟花应助标致幻然采纳,获得10
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312412
求助须知:如何正确求助?哪些是违规求助? 2945030
关于积分的说明 8522726
捐赠科研通 2620818
什么是DOI,文献DOI怎么找? 1433096
科研通“疑难数据库(出版商)”最低求助积分说明 664837
邀请新用户注册赠送积分活动 650217