材料科学
铁磁性
凝聚态物理
原子单位
自旋(空气动力学)
表面光洁度
联轴节(管道)
各向异性
外延
垂直的
空中骑兵
图层(电子)
纳米技术
复合材料
光学
物理
热力学
量子力学
数学
几何学
作者
Alexander S. Samardak,A. V. Davydenko,Alexander Kolesnikov,Aleksei Yu. Samardak,A. G. Kozlov,Bappaditya Pal,Alexey V. Ognev,А. V. Sadovnikov,С. А. Никитов,А.В. Герасименко,In Ho,Yong Jin Kim,Gyu Won Kim,Oleg A. Tretiakov,Young Keun Kim
标识
DOI:10.1038/s41427-020-0232-9
摘要
To stabilize the non-trivial spin textures, e.g., skyrmions or chiral domain walls in ultrathin magnetic films, an additional degree of freedom such as the interfacial Dzyaloshinskii-Moriya interaction (IDMI) must be induced by the strong spin-orbit coupling (SOC) of a stacked heavy metal layer. However, advanced approaches to simultaneously control IDMI and perpendicular magnetic anisotropy (PMA) are needed for future spin-orbitronic device implementations. Here, we show an effect of atomic-scale surface modulation on the magnetic properties and IDMI in ultrathin films composed of 5d heavy metal/ferromagnet/4d(5d) heavy metal or oxide interfaces, such as Pt/CoFeSiB/Ru, Pt/CoFeSiB/Ta, and Pt/CoFeSiB/MgO. The maximum IDMI value corresponds to the correlated roughness of the bottom and top interfaces of the ferromagnetic layer. The proposed approach for significant enhancement of PMA and IDMI through the interface roughness engineering at the atomic scale offers a powerful tool for the development of the spin-orbitronic devices with the precise and reliable controllability of their functionality.
科研通智能强力驱动
Strongly Powered by AbleSci AI